is the objective function stochastic (-> use something like patternsearch) or deterministic?

조회 수: 1 (최근 30일)
My objective function is given by
f(x) = ||d^sim(x) - d^exp||^2
d^exp is a constant vector of measurements, to which I add random noise utilizing randn. Then I call the optimization (lsqnonlin, fmincon, whatever,...) In particular, d^exp does not depend on the parameters x.
Since I add the noise just once a priori to the optimization, my objective function is still deterministic, right?
I just wanted to double-check that because, at least I read about that, objective functions including noise are better handled by derivative-free optimizers like patternsearch.

채택된 답변

Torsten
Torsten 2023년 3월 3일
편집: Torsten 2023년 3월 3일
Since I add the noise just once a priori to the optimization, my objective function is still deterministic, right?
Right, but why do you add noise to your measurement data ? Aren't they noisy enough already ?
I just wanted to double-check that because, at least I read about that, objective functions including noise are better handled by derivative-free optimizers like patternsearch.
Stochastic optimization (thus optimization with an objective with random outputs) isn't possible with any tool from the optimization toolbox.
  댓글 수: 5
Torsten
Torsten 2023년 3월 3일
편집: Torsten 2023년 3월 4일
I just wanted to double-check that because, at least I read about that, objective functions including noise are better handled by derivative-free optimizers like patternsearch.
Just to add to the statement above: The measurement data (d^exp) can be noisy. The main requirement for the use of conventional deterministic optimizers is that the fitting function (d^sim) is a smooth function of the fitting parameters and the independent variable.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Surrogate Optimization에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by