coupled ode for 2nd order

조회 수: 1 (최근 30일)
KM
KM 2023년 2월 7일
편집: Torsten 2023년 2월 7일
I have coupled differential equations:
a(r) \sin ^{4} f+2 \cot (f) a_{r} f_{r}+\frac{a_{r}}{r}-a_{r r}=0,{l}\lambda_{0} r(1-\cos f) \sin f\left(\cos f-\cos ^{2} f+\sin ^{2} f\right) \\ \quad+\frac{a^{2} \cos f \sin f}{r}-\frac{\cot f \csc ^{2} f a_{r}^{2}}{r}-f_{r}-r f_{r r}=0
with certain boundary conditions.
  댓글 수: 1
Torsten
Torsten 2023년 2월 7일
Please put your equations, initial and boundary conditions into a readable format.

댓글을 달려면 로그인하십시오.

답변 (1개)

Torsten
Torsten 2023년 2월 7일
편집: Torsten 2023년 2월 7일
I didn't compare equations and boundary conditions with those listed above.
% Defining parameters
delta = 0.02; % Lower integral bound
R = 5; % Upper integral bound
theta = 0; % ArcTan(q/g)
maxPoints = 1e6; % Maximum numer of grid point used by bvpc4
initialPoints = 10; % Number of initial grid points used by bvpc4
tol = 1e-3; % Maximum allowed relative error.
L = 10;
N = 2;
n = 0;
m = 0;
g = 5;
lambda = 0;
% Boundary conditions
y0 = [0, -1, N*pi, 0];
% Initial conditions
A = @(xi) (1-tanh(((L*xi)/R)-(L/3)))/2;
dA = cosh(theta)*(coth(delta)-delta*csch(delta)^2);
F = @(xi) (1+tanh(((L*xi)/R)-(L/3)))/2;
dF = (1-delta*coth(delta))*csch(delta);
solinit = bvpinit(linspace(delta, R, initialPoints), [A(delta), F(delta), dA,dF]);
% Solves system using bvpc4
options = bvpset('RelTol', tol, 'NMax', maxPoints); % This function sets the allowed
%relative error and maximum number of grid points.
sol = bvp4c(@(xi, y) heatGauge(xi, y, lambda, g, m, n), @(ya, yb) bcheatGauge(ya, yb, y0),...
solinit, options);
xi = linspace(delta, R, 1e4);
y = deval(sol, xi);
plot(xi,y)
function dy1 = heatGauge(xi, y, lambda, g, m, n)
dy1 = [y(3)...
y(4)...
y(3)./xi + (g^2 * (1+y(1)) * (1+(lambda^2*y(4)^2)) * sin(y(2))^2)...
(1./(1+(lambda^2*(n*(y(1)+1)./xi).^2*sin(y(2))^2))) .* ( ((sin(y(2))*cos(y(2))*(n*(y(1)+1)./xi).^2) + (m^2*sin(y(2)))) - (y(4)./xi).*( ((lambda^2*(n*(y(1)+1)./xi)*sin(y(2))^2).*((n*(y(1)+1)./xi)+(2*xi.*(((xi*n*y(3))-(n*y(1))-n)./xi.^2)))) + 1 + (lambda^2*y(4)*xi.*(n*(y(1)+1)./xi).^2.*sin(y(2))*cos(y(2))) ) ) ];
end
function res = bcheatGauge(ya, yb, y0)
res = [ya(1) - y0(1);yb(1) - y0(2);ya(2) - y0(3);yb(2) - y0(4)];
end
  댓글 수: 3
KM
KM 2023년 2월 7일
lambda_0 is just a constant.
Torsten
Torsten 2023년 2월 7일
편집: Torsten 2023년 2월 7일
Then you should remember what changes you made to the function because this one worked:
dy1 = [y(3)...
y(4)...
y(3)./xi + (g^2 * (1+y(1)) * (1+(lambda^2*y(4)^2)) * sin(y(2))^2)...
(1./(1+(lambda^2*(n*(y(1)+1)./xi).^2*sin(y(2))^2))) .* ( ((sin(y(2))*cos(y(2))*(n*(y(1)+1)./xi).^2) + (m^2*sin(y(2)))) - (y(4)./xi).*( ((lambda^2*(n*(y(1)+1)./xi)*sin(y(2))^2).*((n*(y(1)+1)./xi)+(2*xi.*(((xi*n*y(3))-(n*y(1))-n)./xi.^2)))) + 1 + (lambda^2*y(4)*xi.*(n*(y(1)+1)./xi).^2.*sin(y(2))*cos(y(2))) ) ) ];
Maybe because the ... are missing in the third line ?
And remember that in your new code, you use cot(x) which is Inf at all multiples of pi. This can easily lead to a singular Jacobian.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Numerical Integration and Differential Equations에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by