Extended Kalman Filter state transition parameters

조회 수: 1 (최근 30일)
Eduardo
Eduardo 2023년 1월 27일
As a follow up to this question, I am wondering how to correctly input a vector of additional parameters to an EKF block.
The state transition function is a wrapper of the state function used for a NLMPC.
Similar to the following example: Swing-Up Control of a Pendulum. My state function works using additional parameters like the "Ts" used in the example. In my case, however, the additional parameters are some signals U from my plant plus 37 predefined parameters in the base workspace.
This parameters are given as a vector "p".
For now I have tried using a mux:
The simulation fails during compilation with the following error:
The function used as a wrapper looks as follows:
function xk1 = stateFcnEKF_mixBufRd_wrapper(xk, u)
% Wrapper function for the State function used by the Extended Kalman Filter block.
%
%
% u = [signal1 signal2 signal3 signal4 p]
%
% Outputs:
% xk1: Updated state values based on xk and uk
uk = [u(1) u(2) u(3) u(4)];
p = u(5); % <----- vector of 37 parameters defined in base workspace
xk1 = stateFcnDT0_mixBufRd(xk, uk, p); % <----- function used in NLMPC
Any ideas how the configuration of blocks should look like?
I have tried using IC and signal description blocks but I am not sure of the correct input definition.

채택된 답변

Eduardo
Eduardo 2023년 1월 27일
The mux block works just fine, my error was taking p was the fifth input, instead it should have been defined as:
p(5:end)

추가 답변 (1개)

Emmanouil Tzorakoleftherakis
Emmanouil Tzorakoleftherakis 2023년 1월 27일
Glad you figured it out. By the way, this example shows the general workflow of using NLMPC + EKF with additional parameters

카테고리

Help CenterFile Exchange에서 Model Predictive Control Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by