training network plot accuracy intead of rmse

조회 수: 2 (최근 30일)
arash rad
arash rad 2023년 1월 19일
답변: Omega 2024년 11월 19일
hello everyone
I am using LSTM for data prediction and I use trainNetwork for it but When I run my cde the training plot only plots rmse and I want to plot accuracy ?
Here is my layers and Option what sholud I do
numResponses = 1 ;
featureDimension =1;
numHiddenUnits =200;
layers = [ ...
sequenceInputLayer(featureDimension)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer
];
maxepochs = 500;
miniBatchSize = 45 ;
options = trainingOptions('adam', ... %%adam
'MaxEpochs',maxepochs, ...
'GradientThreshold',1, ...
'Shuffle','every-epoch', ...
'ValidationData',{XVal_ZaMir,YVal_ZaMir}, ...
'ValidationFrequency',25,...
'InitialLearnRate',0.005, ...
'MiniBatchSize',miniBatchSize, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropPeriod',50, ...
'LearnRateDropFactor',0.1, ...
'Verbose',1, ...
'Plots','training-progress');

답변 (1개)

Omega
Omega 2024년 11월 19일
To plot accuracy instead of RMSE in the training progress graph when using trainNetwork with LSTM for a classification task, you need to ensure that your network and training options are set up for classification. This involves using a classification layer and specifying accuracy as a metric in the training options.
Here’s how you can do it:
  1. Ensure the network is set up for classification: Use a softmax layer and a classification layer.
  2. Specify accuracy as a metric: Use the trainingOptions function to specify accuracy as a metric.

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by