Cluster multi-gpu training Error: Current pool is not local.

조회 수: 1 (최근 30일)
Christopher McCausland
Christopher McCausland 2023년 1월 12일
댓글: Edric Ellis 2023년 1월 16일
Hello,
I am trying to scale up onto a multi-gpu cluster for deep learing. I can run the model on a single GPU on the cluster with no issues, however when I try to change to multiple GPU's I get this error:
Current pool is not local. Use 'delete(gcp)' to close parallel pool and run again.
My cluster submission function looks like this:
function job = submit_train_script()
cluster = parcluster();
cluster.AdditionalProperties.AdditionalSubmitArgs = '--gres=gpu:4'; % Request 4 GPU's with sbatch
cluster.AdditionalProperties.AdditionalSubmitArgs = '--mail-type=ALL'; % Send me an email if anything happens
cluster.AdditionalProperties.AdditionalSubmitArgs = '--mail-user=myemail@mydomain.ac.uk';
cluster.AdditionalProperties.AdditionalSubmitArgs = '--nodelist=Node002'; % Use node002
% Submit the job, ask for 4 CPU workers, one for each GPU
job = cluster.batch('train_fun', ...
"AutoAddClientPath",false, "CaptureDiary",true, ...
"CurrentFolder",".", "Pool",4);
end
With the network options below. I request 4 GPU's, four worker CPU's to match and then set the exicution enviroment to "multi-gpu". This appears to be the recommended configuration for this type of work. I cannot work out what is causing this error.
% Iteration = Number of (files*cells) / Minibatchsize
options = trainingOptions("adam", ...
ExecutionEnvironment="multi-gpu", ... % cpu,gpu multi-gpu option avaliable
GradientThreshold=1, ...
InitialLearnRate=0.001,...
MaxEpochs=50, ... % 50
MiniBatchSize= 10, ... % 25 miniBatchSize, ... 10 for 16Gb card,
SequenceLength="longest", ...
Shuffle="never", ...
Verbose=0, ...
Plots="training-progress");
net = trainNetwork(ds,layers,options);
Thanks in advance,
Christopher

채택된 답변

Edric Ellis
Edric Ellis 2023년 1월 13일
I think you need to specify ExecutionEnvironment="parallel" for this situation. According to the trainingOptions reference page, "multi-gpu" is only for "multiple GPUs on one machine, using a local parallel pool based on your default cluster profile."
  댓글 수: 2
Christopher McCausland
Christopher McCausland 2023년 1월 15일
Hi Edric,
That seems to work. I hadn't even considered the "parallel" option as I belived that the batch submit would have made the parallel pool local with respect to the cluster. Lesson learned there, thank you!
One stange outcome is a new error, (bearing in mind this code runs without error on a single GPU). The error relates to the 'eq' fucntion which I belive is inbuilt sanity check for the == operator.
The only place the == operator is used in the entire submission is to identify any rows (within the cell variable fridges) which have lables and data I want to exclude. I can do this before I read in the data, however I was wodnering if there is anything obvious that would case this to fail in "gpu" vs "parallel"?
% Exclude lables that we don't care about
includeSet = {'N1_to_N2' 'N2_to_N1' 'N1_to_W' 'W_to_N1' 'N2_to_N3' 'N3_to_N2'};
for j = 1:length(fridges)
% Generate index for where to keep the lables
setidx(j) = sum(fridges{j,2} == includeSet);
end
% remove lables that are not of intrest
fridges(~setidx',:) = [];
Kind regards,
Christopher
Edric Ellis
Edric Ellis 2023년 1월 16일
I can't see quite why this would change behaviour. Do you have an error stack from the failure indicating this is where the problem is coming from? I would be wary of using == to compare char-vectors (single-quote "strings"). This performs an elementwise comparison of the characters, and can fail if the vectors aren't the same length. You might be better off using strcmp.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Parallel and Cloud에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by