Group data based on direct
조회 수: 7 (최근 30일)
이전 댓글 표시
I have a table with values and I want to group them in sectors. Is it possible to do it automatically either than manually?
댓글 수: 4
Adam Danz
2023년 1월 9일
편집: Adam Danz
2023년 1월 9일
Grouping angular values
This demo works with degrees but it's the same process for radians. It assumes angular data are between 0 and 360. If that's not the case in your data, wrap your data to 360 (or to 2pi).
Given the number of bins nBins this computes equispaced bin edges, with a bin centered at 0 deg, and then computes the bin number for each angular data point. The bin centered at 0 is delt with separately.
Grouping isn't too difficult. However, depending on what you plan to do with these group values, you could run into trouble that @Walter Roberson explained. Phase wrapping is a potential solution to this problem (I'm looking at you bin #1).
theta = [rand(1,30)*360]; % vector of angular data [0,360] deg
nBins = 12; % select number of bins
% Compute edges
w = 360/nBins;
edges = w/2:w:(360-w/2);
% Bin data
bin = discretize(theta, edges)+1;
bin(theta>=edges(end) | theta<edges(1)) = 1; % bin at 0
% Plot results, show theta values, bin edges, and bin ID
polaraxes('ThetaZeroLocation','top',...
'RTickLabel','', ...
'ThetaDir','ClockWise')
hold on
polarplot(theta*pi/180, 1, 'ro')
polarplot([1;1].*edges*pi/180, [0;1], 'k-')
text(theta*pi/180, ones(size(theta))-.1, string(bin), ...
'HorizontalAlignment','Center', 'VerticalAlignment', 'middle')
grid off
Walter Roberson
2023년 1월 9일
See also the discussion at https://www.mathworks.com/matlabcentral/answers/128381-how-to-calculate-mean-wind-direction
채택된 답변
Star Strider
2023년 1월 8일
편집: Star Strider
2023년 1월 8일
WindDir = rand(100,1)*360;
edgev = linspace(0, 360, 9);
[N,Edges,Octant] = histcounts(WindDir, edgev);
WindOctants = table(WindDir,Octant)
The first output are the number of counts in each octant (bonus information), and the third is the respective octant.
EDIT — (8 Jan 2023 at 16:30)
Added table.
.
댓글 수: 11
Star Strider
2023년 2월 23일
I thought I could do this with one of the table functions, however extracting and transposing proved to be easiest —
LD = load(websave('T','https://www.mathworks.com/matlabcentral/answers/uploaded_files/1289030/T.mat'))
% DT = datetime('01-Jan-2022') + caldays(0:365).';
% WindVel = lognrnd(log(5),log(3),size(DT));
TT = LD.T
% return
MM = month(TT.date_time);
T = timetable2table(TT);
Vmax = ceil(max(TT.Vel_avg)) % Maximum Velocity In File
edgev = linspace(0, Vmax, Vmax+1); % Edge Vector
edgem = [edgev(1:end-1); edgev(2:end)].'; % Bin Limits (For Output Table)
ctrs = mean(diff(edgev))/2 + edgev(1:end-1); % Bin Centers
[N,Edges,mps] = histcounts(TT.Vel_avg, edgev); % Call 'histcounts'
figure
bar(ctrs, N)
grid
xlabel('Velocity')
ylabel('Counts')
WindVelCounts = table(edgem(:,1),edgem(:,2)); % Initialise Table
for k = 1:12
Month = T(MM==k,:);
[N,Edges,mps] = histcounts(T.Vel_avg(MM==k,:), edgev); % Call 'histcounts¹
Nc{k} = N;
Dch{k+2} = mps;
WindVelCounts{:,k+2} = N(:);
MMM{k} = month(Month{1,1},'shortname');
end
MMMv = [MMM{:}];
WindVelCounts.Properties.VariableNames = {'Start','End', MMMv{:}}
VN = WindVelCounts.Properties.VariableNames;
WindVelCountsTransposed = array2table(table2array(WindVelCounts(:,3:end)).', 'RowNames',VN(3:end));
WindVelCountsTransposed.Properties.VariableNames = compose('[%d-%d]',edgem)
% figure
% TL = tiledlayout(4,3);
% for k = 1:12
% nexttile
% bar(ctrs,WindVelCounts{:,k+2})
% grid
% ylim([0 1.8E+4])
% title(MMM{k})
% end
% title(TL,year(TT.date_time(1,1)))
All the original information is still there in case you need it. Plotting it using bar3 might be another option, in addition to tiledlayout.
.
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Data Type Identification에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





