negative values kernel density estimation
조회 수: 6 (최근 30일)
이전 댓글 표시
I have obtained the monthly temperature distribution using kernel density estimate. And using SVD(Singular Value Decomposition) and regression model, I forecast the monthly temperature distribution. But I found that some estimated kernel density values are negative. How to deal with these negative values?
댓글 수: 10
Adam Danz
2022년 12월 22일
> So you mean that I should delete the negative values in z
No, I would take a step back and investigate. Do you expect there to be negative values in z? If not, then how did they get there? Perhaps something went wrong with your calculations of z or perhaps your expectations of what z should be aren't correct expectations. If you do expect there to be negative values in z or that negative values are possible, then I would re-think whether it is a problem that the forecast produces negative values.
If z isn't meaningful data and you're using z to poke around at the model, then it's completely fine to replace the negative values or use an entirely different set of data. But if z is meaningful data, you can't just delete some values because they are causing problems.
I don't know enough about what the data are or about the forecasting you're using to suggest the next steps.
답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Gaussian Process Regression에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!