Finding roots of a two variable function

조회 수: 6 (최근 30일)
Chaitanya
Chaitanya 2022년 12월 11일
이동: Walter Roberson 2022년 12월 14일
Basically I have x which is a column vector with 350 rows of random data. I need to model this as a Birnbaum Sauders distribution and estimate its parameters. I can do this directly using the mle function, but I wonder if its possible to use fsolve. Below is my function file.
function f = BirnbaumSaunders(alpha,lamb)
F = (alpha.^2)-((1/350)*sum((lamb.*x)+(1./(lamb.*x))-2));
G = (-175.*lamb)+((1./(2.*(alpha.^2)))*sum(((lamb.*lamb.*x))-(1./x))+sum(lamb./((lamb.*x)+1)));
end
Here, I have to find the value of alpha and lamb for which both my functions F and G are zero. I have tried using the fsolve with initial alpha and lamb values as 0.65 and 2.13 (I got these values after using the mle function). But I'm getting an error using fsolve.
fun = @BirnbaumSaunders;
x = fsolve(fun,[0.65,2.13])
This is giving me an error. Is there any other way to find the values of alpha and lamb when F and G are set to 0?

답변 (2개)

Torsten
Torsten 2022년 12월 12일
x = rand(10,1);
fun = @(z)BirnbaumSaunders(z(1),z(2),x);
z = fsolve(fun,[0.65,2.13])
Solver stopped prematurely. fsolve stopped because it exceeded the function evaluation limit, options.MaxFunctionEvaluations = 2.000000e+02.
z = 1×2
0.1961 -1.1427
norm(fun(z))
ans = 0.1632
function f = BirnbaumSaunders(alpha,lamb,x)
F = (alpha.^2)-((1/350)*sum((lamb.*x)+(1./(lamb.*x))-2));
G = (-175.*lamb)+((1./(2.*(alpha.^2)))*sum(((lamb.*lamb.*x))-(1./x))+sum(lamb./((lamb.*x)+1)));
f = [F;G];
end
  댓글 수: 5
Chaitanya
Chaitanya 2022년 12월 12일
편집: Chaitanya 2022년 12월 12일
I got a correct value using this data and your code!!! Thank you very much for your time!
Torsten
Torsten 2022년 12월 12일
You want to estimate two parameters of a distribution given seven realizations ? That's ... courageous.

댓글을 달려면 로그인하십시오.


Walter Roberson
Walter Roberson 2022년 12월 14일
이동: Walter Roberson 2022년 12월 14일
format long g
x = [
0.260594
0.50998
0.609437
0.365165
0.949793
0.590385
0.902765];
fun = @(z)BirnbaumSaunders(z(1),z(2),sym(x));
syms z [1 2]
F = simplify(fun(z))
F = 
sol = vpasolve(F,[0.65;2.13])
sol = struct with fields:
z1: [16×1 sym] z2: [16×1 sym]
vpa(subs(z, sol))
ans = 
subs(F, sol)
ans = 
fun = @(z)BirnbaumSaunders(z(1),z(2),x);
opt = optimoptions('fsolve', 'MaxFunctionEvaluations', 1e4);
Z = fsolve(fun,[0.06,2], opt)
Equation solved. fsolve completed because the vector of function values is near zero as measured by the value of the function tolerance, and the problem appears regular as measured by the gradient.
Z = 1×2
0.0630815494828271 2.00076854993031
function f = BirnbaumSaunders(alpha,lamb,x)
F = (alpha.^2)-((1/350)*sum((lamb.*x)+(1./(lamb.*x))-2));
G = (-175.*lamb)+((1./(2.*(alpha.^2)))*sum(((lamb.*lamb.*x))-(1./x))+sum(lamb./((lamb.*x)+1)));
f = [F;G];
end

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by