SVM parameter optimization using GA

조회 수: 5 (최근 30일)
Josh
Josh 2022년 12월 3일
댓글: Josh 2022년 12월 7일
I am facing issues of high prediction error. Please help.
load data1.mat
X = data1(1:83,1:end-1);
Y = data1(1:83,end);
X1 = data1(84:end,1:end-1);
Y1 = data1(84:end,end);
c = cvpartition(Y,'KFold',5,'Stratify',false);
fobj = @(x)kfoldLoss(fitrsvm(X,Y,'CVPartition',c,'KernelFunction','gaussian','BoxConstraint', x(1),'KernelScale',x(2),'Epsilon',x(3)));
intcon = 1; % intcon is the indicator of integer variables
lb = [1e-3,1e-3,1e-3]; % set lower bounds
ub = [1e3,1e1,1e1]; % set upper bounds
[sol,fval] = ga(fobj,3,[],[],[],[],lb,ub,[],intcon);
FinalModel = fitrsvm(X,Y,'KernelFunction', 'gaussian','BoxConstraint', sol(1),'KernelScale',sol(2),'Epsilon',sol(3));
yfit = predict(FinalModel, X1);
RMSE = rmse(yfit,Y1)
  댓글 수: 1
Josh
Josh 2022년 12월 3일
편집: Josh 2022년 12월 4일
Someone have a look and drop a response please.

댓글을 달려면 로그인하십시오.

답변 (1개)

Sudarshan
Sudarshan 2022년 12월 7일
Hi Josh,
I tried running the script and reproducing the high RMSE values.
  • The RMSE value decreases on taking a higher number of training samples.
  • Instead of using just 83 samples for X, I used 150 samples, and the RMSE significantly decreased from 0.15 to 0.008.
  • The reason for the high RMSE value could be that there are less training samples.
You could try increasing the size of the training dataset and see if that solves the issue.
  댓글 수: 1
Josh
Josh 2022년 12월 7일
Thank you Sir for the kind reply when others ignored to drop a reply in the community.
I understand your point of more training samples to reduce the error value, which is true.
Also I wish to improve the error on these samples if possible.
I am not sure how to achieve that.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by