Gradient of loss for variational autoencoder?
조회 수: 2 (최근 30일)
이전 댓글 표시
Hi, I have the following code for a variational autoencoder. My data is sequence data, not images, so 'Train' consists of ~5,000 univariate sequences, each around 400 observations long. When I run the below code, 'genGrad' is coming up as entirely 0s (not NaNs) and I'm just getting the same loss value every time over multiple epochs. Very unfamiliar with dl in MatLab and not sure where I'm off here.
inputsize = height(Train);
R = 2;
numLatentChannels = 2;
layersE1 = layerGraph([
sequenceInputLayer(inputsize,"Name","input",'Normalization','none')
fullyConnectedLayer(150*R,"Name","fc_1") %R can be any number/ factor
leakyReluLayer(0.01,"Name","leakyrelu_1")
fullyConnectedLayer(100*R,"Name","fc_2")
leakyReluLayer(0.01,"Name","leakyrelu_2")
fullyConnectedLayer(50*R,"Name","fc_3")
leakyReluLayer(0.01,"Name","leakyrelu_3")
fullyConnectedLayer(25*R,"Name","fc_4")
leakyReluLayer(0.01,"Name","leakyrelu_4")
fullyConnectedLayer(10*R,"Name","fc_5")
leakyReluLayer(0.01,"Name","leakyrelu_5")
fullyConnectedLayer(5*R,"Name","fc_6")
leakyReluLayer(0.01,"Name","leakyrelu_6")
fullyConnectedLayer(2*numLatentChannels)
]);
%% Decoder
numInputChannels = size(Train,1);
outputsize = height(Train);
layersD = layerGraph([
sequenceInputLayer(numLatentChannels,"Name","Dinput")
fullyConnectedLayer(5*R,"Name","fc_ou2")
leakyReluLayer(0.01,"Name","leakyrelu_ou2")
fullyConnectedLayer(10*R,"Name","fc_ou3")
leakyReluLayer(0.01,"Name","leakyrelu_ou3")
fullyConnectedLayer(25*R,"Name","fc_ou4")
leakyReluLayer(0.01,"Name","leakyrelu_ou4")
fullyConnectedLayer(50*R,"Name","fc_ou5")
leakyReluLayer(0.01,"Name","leakyrelu_ou5")
fullyConnectedLayer(100*R,"Name","fc_ou6")
leakyReluLayer(0.01,"Name","leakyrelu_ou6")
fullyConnectedLayer(150*R,"Name","fc_ou7")
leakyReluLayer(0.01,"Name","leakyrelu_ou7")
fullyConnectedLayer(outputsize,"Name","fc_16")
]);
%% create networks from layers
encoderNet1 = dlnetwork(layersE1);
decoderNet = dlnetwork(layersD);
%%
miniBatchSize = 64;
numTrainSeq = width(Train);
%Set training options
executionEnvironment = "auto"; % set execution environment
dsTrain = arrayDatastore(Train,IterationDimension=2);
numOutputs = 1;
mbq = minibatchqueue(dsTrain,numOutputs, ...
MiniBatchSize = miniBatchSize, ...
MiniBatchFormat="CT",...
MiniBatchFcn=@preprocessMiniBatch, ...
PartialMiniBatch="discard");
numEpochs = 50; % Num of epochs
lr = 1e-4; % Learning rate
numIterationsperEpoch = ceil(numTrainSeq/miniBatchSize); % Num of Iteration per epoch
numIterations = numEpochs * numIterationsperEpoch;
avgGradientsEncoder = [];
avgGradientsSquaredEncoder = [];
avgGradientsDecoder = [];
avgGradientsSquaredDecoder = [];
monitor = trainingProgressMonitor( ...
Metrics="Loss", ...
Info="Epoch", ...
XLabel="Iteration");
epoch = 0;
iteration = 0;
%Train the model
while epoch < numEpochs && ~monitor.Stop
epoch = epoch + 1
shuffle(mbq);
while hasdata(mbq) && ~monitor.Stop
iteration = iteration + 1
XBatch = next(mbq);
if (executionEnvironment == "auto" && canUseGPU) || executionEnvironment == "gpu"
XBatch = gpuArray(XBatch);
end
compressed = forward(encoderNet1, XBatch);
d = size(compressed,1)/2;
zMean = compressed(1:d,:);
zLogvar = compressed(1+d:end,:);
sz = size(zMean);
epsilon = randn(sz);
sigma = exp(.5 * zLogvar);
z = epsilon .* sigma + zMean;
z = reshape(z, [sz]);
zSampled = dlarray(z, 'CT');
% calculate gradient of loss
[infGrad, genGrad] = dlfeval(@modelGradients1, encoderNet1, decoderNet, XBatch, zSampled,zMean,zLogvar);
% update parameters of Encoder/Decoder
[decoderNet.Learnables, avgGradientsDecoder, avgGradientsSquaredDecoder] = ...
adamupdate(decoderNet.Learnables, ...
genGrad, avgGradientsDecoder, avgGradientsSquaredDecoder, iteration, lr);
[encoderNet1.Learnables, avgGradientsEncoder, avgGradientsSquaredEncoder] = ...
adamupdate(encoderNet1.Learnables, ...
infGrad, avgGradientsEncoder, avgGradientsSquaredEncoder, iteration, lr);
end
% Update the training progress monitor.
recordMetrics(monitor,iteration,Loss=loss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
monitor.Progress = 100*iteration/numIterations;
end
function [infGrad, genGrad] = modelGradients1(encoderNet1, decoderNet, XBatch, zSampled,zMean,zLogvar)
xPred = forward(decoderNet, zSampled);
xPred = dlarray(xPred, 'CT');
loss = elboLoss(XBatch, xPred, zMean, zLogvar);
[genGrad, infGrad] = dlgradient(loss, decoderNet.Learnables, ...
encoderNet1.Learnables);
end
function elbo = elboLoss(x,xPred,zMean,zLogvar)
reconstructionLoss = mse(x,xPred); % Reconstruction loss.
KL = -0.5 * sum(1 + zLogvar - zMean.^2 - exp(zLogvar),1); % KL divergence.
KL = mean(KL);
elbo = reconstructionLoss + KL; % Combined loss.
end
댓글 수: 0
채택된 답변
Richard
2022년 11월 18일
편집: Richard
2022년 11월 25일
Zero gradients are normally caused by the computation between the inputs and the output loss not being traced. When dlgradient cannot see that the loss has a dependency on an input, it always assigns zero gradients for that input. Only computations that are inside the function that is passed to dlfeval are traced.
In this case, you have a chunk of code being run outside the dlfeval to compute zSampled, including the forwarding through the encoder. Try moving that code inside the modelGradients1 function.
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!