Invalid training or validation response data
조회 수: 3 (최근 30일)
이전 댓글 표시
Hello, I am training a neural network with semantic segmentation data and I have the following error:
Error using trainNetwork (line 184)
Maximum variable size allowed on the device is exceeded.
Error in index (line 48)
net = trainNetwork(trainingData,layers,opts);
Caused by:
Error using gpuArray
Maximum variable size allowed on the device is exceeded.
I believe this is because the input sizes of my images are quite high: imageInputLayer([8000 6000 3])
I used a @customreader function to resize the images in my imageDatastore and pixelLabelDatastore as follows: imds.ReadFcn = @customreader; and pxds.ReadFcn = @customreader;
However, it is returning the following error:
Error using trainNetwork (line 184)
Invalid training or validation response data. Categorical responses must
either be a vector or a single-channel 2-D or 3-D image.
Error in index (line 48)
net = trainNetwork(trainingData,layers,opts);
I'll leave the code I'm using:
clear, clc, close all;
%% Upload a set of images for training
imds = imageDatastore('Imagens');
imds.ReadFcn = @customreader;
I = readimage(imds,1);
%% Load pixel label images using pixelLabelDatastore
pxDir = fullfile('PixelLabelData');
classNames = ["Escala" "Fundo"];
pixelLabelID = [1 2];
pxds = pixelLabelDatastore(pxDir,classNames,pixelLabelID);
pxds.ReadFcn = @customreader;
C = readimage(pxds,1);
%% Create a binary mask
buildingMask = C == 'Escala';
%figure
%imshowpair(I, buildingMask,'montage')
%% Create a semantic segmentation network
numFilters = 64;
filterSize = 3;
numClasses = 2;
layers = [
imageInputLayer([8000 6000 3])
convolution2dLayer(filterSize,numFilters,'Padding',1)
reluLayer()
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(filterSize,numFilters,'Padding',1)
reluLayer()
transposedConv2dLayer(4,numFilters,'Stride',2,'Cropping',1);
convolution2dLayer(1,numClasses);
softmaxLayer()
pixelClassificationLayer()
];
opts = trainingOptions('sgdm', ...
'InitialLearnRate',1e-3, ...
'MaxEpochs',100, ...
'MiniBatchSize',64);
trainingData = combine(imds,pxds);
net = trainNetwork(trainingData,layers,opts);
The function to resize imageDatastore and pixelLabelDatastore:
function data = customreader(filename)
onState = warning('off', 'backtrace');
c = onCleanup(@() warning(onState));
data = imread(filename);
data = data(:,:,min(1:3, end));
data = imresize(data, [100 75]);
end
I'll also leave a folder on the drive with all the files I'm using:
If you can help me, I will be very grateful.
댓글 수: 0
답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Image Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!