Hi @TrevorR
You can try using this command [aic, bic] = aicbic(). For more info, please check:
help aicbic
 AICBIC Information criteria
 
  Syntax:
 
    aic = aicbic(logL,numParam)
    [aic,bic] = aicbic(logL,numParam,numObs)
    [aic,bic] = aicbic(logL,numParam,numObs,'Normalize',true)
    [aic,bic,ic] = aicbic(logL,numParam,numObs)
    [aic,bic,ic] = aicbic(logL,numParam,numObs,'Normalize',true)
 
 
  Description:
 
    Given loglikelihood values logL obtained by fitting a model to data,
    compute information criteria to assess model adequacy. Information
    criteria rank models using measures that balance goodness of fit with
    parameter parsimony. Models with lower criteria values are preferred.
 
  Input Arguments:
 
    logL - Loglikelihoods associated with parameter estimates of different
           models, specified as a vector of numeric values.
 
    numParam - Number of estimated parameters in the models, specified as a
           positive integer applied to all elements in logL, or a vector of
           positive integers having the same length as logL.
 
  Optional Input Argument:
 
    numObs - Sample sizes used in estimation, specified as a positive
           integer applied to all elements in logL, or a vector of positive
           integers having the same length as logL. AICBIC requires numObs
           for all criteria except the Akaike information criterion, or if
           'Normalize' is true.
 
  Optional Input Parameter Name/Value Arguments:
 
    NAME            VALUE
 
    'Normalize'     Flag to normalize results by numObs, specified as a
                    logical value. When true, all output arguments are
                    divided by numObs. The default is false.
 
  Output Arguments:
 
    aic - Vector of Akaike information criteria corresponding to elements
         of logL.
 
    bic - Vector of Bayesian (Schwarz) information criteria corresponding
         to elements of logL.
 
    ic - Structure array with fields:
 
         aic	Akaike information criteria (AIC)
         bic	Bayesian (Schwarz) information criteria (BIC)
         aicc	Corrected Akaike information criteria (AICc)
         caic	Consistent Akaike information criteria (CAIC)
         hqc	Hannan-Quinn criteria (HQC)
 
         ic.aic and ic.bic are the same values returned in aic and bic.
         AICBIC computes unnormalized criteria as follows:
  
         o	AIC  = -2*logL + 2*numParam 
  
         o	BIC = -2*logL + log(numObs)*numParam 
  
         o	AICC = AIC + [2*numParam*(numParam+1)]/(numObs-numParam-1)
  
         o	CAIC = -2*logL + (log(numObs)+1)*numParam
  
         o	HQC = -2*logL + 2*log(log(numObs))*numParam
  
  Notes:
 
    o Misspecification tests LMTEST, LRATIOTEST, and WALDTEST compare the
      loglikelihoods of two competing nested models. By contrast, AICBIC
      accepts the loglikelihoods of individual model fits and returns
      approximate measures of "information loss" with respect to the data-
      generating process. Information criteria provide relative rankings of
      any number of competing models, including non-nested models.
 
    o In small samples, AIC tends to overfit. To address overfitting, AICc
      adds a size-dependent correction term that increases the penalty on
      the number of parameters. AICc approaches AIC asymptotically.
      Analysis in [3] suggests using AICc when numObs/numParam < 40.
      
    o When econometricians compare models with different numbers of
      autoregressive lags or different orders of differencing, they often
      scale information criteria by the number of observations [5]. To do
      this, set numObs to the effective sample size of each estimate, and
      set 'Normalize' to true.
 
  Example:
 
    % Simulate DGP
 
    T = 100;
    DGP = arima('Constant',1,'AR',[0.2,-0.4],'Variance',1);
    y = simulate(DGP,T);
  
    % Competing models
  
    Mdl1 = arima('ARLags',1);
    Mdl2 = arima('ARLags',1:2);
    Mdl3 = arima('ARLags',1:3);
  
    % Compute log-likelihoods
  
    logL = zeros(3,1);
    [~,~,logL(1)] = estimate(Mdl1,y,'Display','off');
    [~,~,logL(2)] = estimate(Mdl2,y,'Display','off');
    [~,~,logL(3)] = estimate(Mdl3,y,'Display','off');
  
    % Compute and compare information criteria
  
    numParam = [3;4;5];
    numObs = T*ones(3,1);
    [~,~,ic] = aicbic(logL,numParam,numObs)
  
  References:
 
    [1] Akaike, H. "Information Theory and an Extension of the Maximum
        Likelihood Principle." In: Petrov B., Csaki F., editors. Second
        International Symposium on Information Theory. Budapest: Akademiai
        Kiado, 1973, pp. 267-281.
 
    [2] Akaike, H. "A New Look at the Statistical Model Identification."
        IEEE Transactions on Automatic Control. Vol. 19, No, 6, 1974, 
        pp. 716-723.
  
    [3] Burnham, K. and D. Anderson. Model Selection and Multimodel
        Inference: A Practical Information-Theoretic Approach, 2nd Ed.
        New York: Springer, 2003.
  
    [4] Hannan, E. and B. Quinn. "The Determination of the Order of an
        Autoregression." Journal of the Royal Statistical Society, Series
        B. Vol. 41, 1979, pp. 190-195.
  
    [5] Lutkepohl, H. and M. Kratzig. Applied Time Series Econometrics.
        Cambridge: Cambridge University Press, 2004.
  
    [6] Schwarz, G. "Estimating the Dimension of a Model." The Annals of
        Statistics. Vol. 6, No. 2, 1978, pp. 461-464.
 
  See also LMTEST, LRATIOTEST, WALDTEST.
    Documentation for aicbic
       doc aicbic
Also read about Akaike's Information Criterion (AIC) here:


