calibration in image analysis

조회 수: 2 (최근 30일)
Chaitanya kumar reddy
Chaitanya kumar reddy 2022년 10월 4일
답변: Udit06 2023년 9월 29일
find (BW==1);
[m,n]= find (BW==1);
pos = [m';n'];
D = zeros(1,448)
for i = 1:length(m)
i
D(i,:) = [calibrated_data(m(i),n(i),:)]
end
i have used the above code for calibration but the dataset has 398656 elements and it is taking so long to calibrate like more than 1hr. is there any faster way for calibration??
  댓글 수: 2
Benjamin Thompson
Benjamin Thompson 2022년 10월 4일
Can you provide more information about what you are calibrating, and maybe a small sample image? What is the problem?
Chaitanya kumar reddy
Chaitanya kumar reddy 2022년 10월 4일
clc
clear all
close all
dataset_name = ['20220118_test_Normalbreast_061722_1_left_2022-06-17_19-28-26'];
raw_data_headfile = strcat('D:\HSI_data\', dataset_name, '\capture\', dataset_name, '.hdr');
raw_data_datafile = strcat('D:\HSI_data\', dataset_name, '\capture\', dataset_name, '.raw');
dark_ref_headfile = strcat('D:\HSI_data\', dataset_name, '\capture\DARKREF_', dataset_name, '.hdr');
dark_ref_datafile = strcat('D:\HSI_data\', dataset_name, '\capture\DARKREF_', dataset_name, '.raw');
white_ref_headfile = strcat('D:\HSI_data\', dataset_name, '\capture\WHITEREF_', dataset_name, '.hdr');
white_ref_datafile = strcat('D:\HSI_data\', dataset_name, '\capture\WHITEREF_', dataset_name, '.raw');
raw_info = enviinfo(raw_data_headfile);
raw_data = multibandread(raw_data_datafile,[raw_info.Height, raw_info.Width, raw_info.Bands],...
raw_info.DataType, raw_info.HeaderOffset, raw_info.Interleave, raw_info.ByteOrder);
dark_info = enviinfo(dark_ref_headfile);
dark_data = multibandread(dark_ref_datafile, [dark_info.Height, dark_info.Width, dark_info.Bands],...
dark_info.DataType, dark_info.HeaderOffset, dark_info.Interleave, dark_info.ByteOrder);
dark_data_avg = mean(dark_data, 1);
white_info = enviinfo(white_ref_headfile);
white_data = multibandread(white_ref_datafile, [white_info.Height, white_info.Width, white_info.Bands],...
white_info.DataType, white_info.HeaderOffset, white_info.Interleave, white_info.ByteOrder);
white_data_avg = mean(white_data, 1);
calibrated_data = raw_data;
for i = 1:size(raw_data, 1)
calibrated_data(i, :, :) = (calibrated_data(i, :, :) - dark_data_avg)./ (white_data_avg - dark_data_avg);
end
rice_dot = calibrated_data(238, 460, :);
background_dot = calibrated_data(323, 658, :);
plot(raw_info.Wavelength, rice_dot(:))
hold on
plot(raw_info.Wavelength, background_dot(:))
legend('grape', 'background')
A = imread('D:\HSI_data\20220118_test_Normalbreast_061722_1_left_2022-06-17_19-28-26\20220118_test_Normalbreast_061722_1_left_2022-06-17_19-28-26.png');
imshow(A)
B = rgb2gray(A);
level = graythresh(B);
BW = im2bw(B,level);
find (BW==1);
[m,n]= find (BW==1);
pos = [m';n'];
D = zeros(1,448)
%D = cell([1 2]);
for i = 1:length(m)
D(i,:) = [calibrated_data(m(i),n(i),:)];
end
% E = mean(D);
% plot(raw_info.Wavelength,E)
% figure
% imshow(BW);
%
%
% % D = calibrated_data(70,275,:);
% % E = reshape(D,[1,448]);

댓글을 달려면 로그인하십시오.

답변 (1개)

Udit06
Udit06 2023년 9월 29일
Hi Chaitanya,
I understand that the code that you have written for calibration is taking a long time to run. You can utilize the following features supported by MATLAB to make your code run faster.
1) Vectorization: Instead of using a loop to iterate over each element, try to use vectorized operations whenever possible. MATLAB is optimized for array operations, and using vectorization can significantly speed up the computation.
2) Parallel Computing: Consider using parallel computing techniques like MATLAB's "parfor" to distribute the workload across multiple workers.
You can refer to the below MathWorks documentations to understand more about vectorization and “parfor” respectively.
I hope this helps.

카테고리

Help CenterFile Exchange에서 Sparse Matrices에 대해 자세히 알아보기

태그

제품


릴리스

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by