LSQcurvefit does not yield same result for comparable data sets

조회 수: 3 (최근 30일)
Rebecca Belmer
Rebecca Belmer 2022년 9월 29일
댓글: Torsten 2022년 9월 29일
I have used the following code to fit my data. Key is that the fit captures the peak at the start of the curve.
For a lot of data sets, the method works (example are x_good,y_good).
For two sets this method does not work adequate enough (x5, y5 and x10, y10)
Anyone who can see if I am doing something wrong? Or give a different method which works better?
clear all
clc
close all
% Working data set
x_good = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.2415 0.299833333 0.359833333 0.409833333 0.459833333 0.589833333 0.674833333];
y_good = [0.000001 -1.791689626 -2.085814283 -1.254192484 -1.130978553 -0.852663995 -0.650156083 -0.605732792 -0.552092535 -0.466707459 -0.381595899 -0.341840176 -0.112360934 -0.107089368];
%Not working data set
x5 = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.299833333 0.359833333 0.509833333 0.589833333 0.674833333];
y5 = [0.000001 -1.512917459 -1.397221246 -0.861543826 -0.678138048 -0.538930943 -0.440640054 -0.253865251 -0.192352332 0.001791084 0.078138742 0.156925367];
%Not working data set
x10 = [0 0.0025 0.020666667 0.0915 0.129 0.169916667 0.204 0.2415 0.299833333 0.359833333 0.409833333 0.459833333 0.589833333 0.674833333];
y10 = [0.000001 -0.909146404 -1.389416499 -0.736431181 -0.767464076 -0.430784784 -0.298350016 -0.477736703 -0.174485909 -0.10975744 -0.038531763 0.009471926 0.133414928 0.178482903];
% LSQ
t = x5;
y =y10;
xspace = linspace(t(1), t(end), 1000);
options = optimoptions('lsqcurvefit', 'MaxFunctionEvaluations', 100e3)
% fit function y = c(1)*exp(-lam(1)*t) + c(2)*exp(-lam(2)*t)
F = @(x,t)(x(1)*exp(-x(2)*t) + x(3)*exp(-x(4)*t));
x4 = [1 1 1 0];
[x,resnorm,~,~,output] = lsqcurvefit(F,x4,t,y, [], [], options)
figure
plot(t,y,'ro')
title("Least squared method ")
hold on
plot(t,F(x,t), 'r')
hold on
plot(xspace, F(x, xspace), '--r')
set(gca, 'YDir','reverse')
legend("data points", "LSQ, resnorm: " + resnorm, "LSQ continous")

채택된 답변

Torsten
Torsten 2022년 9월 29일
Use
x4 = [-2.1782 5.0283 2.1782 720.8491];
instead of
x4 = [1 1 1 0];
as initial guess for the parameters.
  댓글 수: 2
Rebecca Belmer
Rebecca Belmer 2022년 9월 29일
Thank you! It works!
Can you tell me how I can best guess x4? Or how you found these values?
Torsten
Torsten 2022년 9월 29일
From the fit results of y_good against x_good :-)

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Get Started with Curve Fitting Toolbox에 대해 자세히 알아보기

제품


릴리스

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by