Carrying filter state from adaptive to non-adaptive

조회 수: 2 (최근 30일)
Julius Kusuma
Julius Kusuma 2015년 3월 3일
답변: Puneet Rana 2015년 3월 17일
Hi, I would like to develop a simple simulation of using an adaptive filter to track a signal over a training period. And then to use the final coefficients of that adaptive filter on a regular, non-adaptive filter. So I made the following code snippet, however there is a significant jump during the transition. Is there an example of how to do this correctly, please?
I thought I had done it correctly by:
%%training period
[Est1n,Err1n] = filter(AdaptH, xn(1:Ntraining), yn(1:Ntraining));
hEst = AdaptH.coefficients;
hState = AdaptH.states;
%%fixed filter period
[Est2n] = filter(hEst, 1, xn(Ntraining+1:end), hState);
Err2n = yn(Ntraining+1:end) - Est2n;
I have also tried stating:
Nfilt = 10; mu = 0.8; offset = 10; AdaptH = adaptfilt.nlms(Nfilt,mu,1,offset);
AdaptH.Persistent = 1;
But still it didn't work.
Full demo code follows.
Thanks in advance.
Julius
clear all;
Nsignal = 1024;
Ntraining = 128;
xn = randn(Nsignal,1);
hTrue = [1 -0.2 0 0 0.1 0.5 0 -0.2].';
tn = filter(hTrue,1,xn);
yn = tn + 0.02*randn(Nsignal,1);
Nfilt = 10; mu = 0.8; offset = 10; AdaptH = adaptfilt.nlms(Nfilt,mu,1,offset);
%%training period
[Est1n,Err1n] = filter(AdaptH, xn(1:Ntraining), yn(1:Ntraining), hState);
hEst = AdaptH.coefficients;
hState = AdaptH.states;
%%fixed filter period
[Est2n] = filter(hEst, 1, xn(Ntraining+1:end));
Err2n = yn(Ntraining+1:end) - Est2n;
%%show results
figure;
subplot(211);
plot((1:Nsignal), tn, 'b', 'linewidth', 1.5); hold on;
plot((1:Ntraining), Est1n, 'ok', 'linewidth', 1.5);
plot((Ntraining+1:Nsignal), Est2n, 'og', 'linewidth', 1.5); hold off;
legend('Ideal noiseless signal', 'Estimate during training', 'Estimate after training');
subplot(212);
plot((1:Nsignal), [Err1n; Err2n], 'r', 'linewidth', 1.5);
legend('Error signal');

답변 (1개)

Puneet Rana
Puneet Rana 2015년 3월 17일
Instead of adaptfilt.nlms, try the recent dsp.LMSFilter object:
This object has the property 'AdaptInputPort' that lets you provide a control input which decides if the filter weights should be adapted or not. See the second example on the above page. I have modified it slightly to show how to turn off adaptation after initial training period:
hlms2 = dsp.LMSFilter('Length',11, ...
'Method','Normalized LMS',...
'AdaptInputPort',true, ...
'StepSizeSource','Input port', ...
'WeightsOutputPort',false);
hfilt2 = dsp.FIRFilter('Numerator', fir1(10,[.5, .75]));
x1 = randn(1000,1); % Noise
d1 = step(hfilt2,x1) + sin(0:.05:49.95)'; % Noise + Signal
x2 = randn(1000,1); % Noise
d2 = step(hfilt2,x2) + sin(0:.05:49.95)'; % Noise + Signal
a = 1; % adaptation control
mu = 0.05; % step size
[y1, err1] = step(hlms2,x1,d1,mu,a); % training period
a = 0;
[y2, err2] = step(hlms2,x2,d2,mu,a); % fixed filter period
figure;
subplot(2,1,1);
plot([d1;d2]);
title('Noise + Signal');
subplot(2,1,2);
plot([err1;err2]);
title('Signal');

카테고리

Help CenterFile Exchange에서 Adaptive Filters에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by