How to solve differential equation including derivative of eigenvalue of tensor?
    조회 수: 6 (최근 30일)
  
       이전 댓글 표시
    
I am trying to solve this equation by ODE45.

here, A is sencond-order tensor, and  is time derivative of eigenvalue of  A.
 is time derivative of eigenvalue of  A.
 is time derivative of eigenvalue of  A.
 is time derivative of eigenvalue of  A.
So, I try to wirte like bellow.
tspan=[0:0.01:1];
Azero= [0.4 0.1 0; 0.1 0.4 0.1; 0 0.1 0.2]
[T,Av] = ode45('Adotxx', tspan, tens2vec(Azero)); % Azero converted to vector style, this is another function
%%
function Aderiv = Adotxx(t, Av)
A = vec2tens(Av); % Azero converted to tensor style from vector style
% making eigenvector 
[e, lambda] = eig(A);
%  must be sorted eigenvectors and eigenvalues
[lambda_index, SortO] = sort(diag(lambda),'descend');
lambda_temp = zeros(3);
e_temp = zeros(3);
for i =1:3
    lambda_temp(i,i) = lambda_index(i);
    e_temp(1:3,i) = e(1:3,SortO(i));
end
% time derivative of lambda
lambda_dot = diff(lambda);
X = lambda_dot
% differential equation
Aderiv = A + X
end
However, you know, the lambda_dot is not true time derivative. it is just derivative in matrix at one moment like Differentiation - MATLAB & Simulink - MathWorks. lambda_dot become matrix of (2,3) by diff(lambda).
How can I correct the code? 
Thank you for your hospitality.
댓글 수: 0
채택된 답변
  Torsten
      
      
 2022년 9월 28일
        
      편집: Torsten
      
      
 2022년 9월 28일
  
      A third variante of the code also seems to work under MATLAB ( for high values of the integration tolerances :-) )
syms s
A = sym('A',[3 3]);
% Define characteristic polynomial
determinant = det(A-s*eye(3));
% Compute eigenvalues
lambda = solve(determinant==0,s,'MaxDegree',3);
tspan = [0:0.01:1];
Azero = [0.4 0.1 0; 0.1 0.4 0.1; 0 0.1 0.2];
L = double(subs(lambda,A,Azero)).';
Azero = [Azero;L];
Azero = reshape(Azero.',[12,1]);
M = [eye(9),zeros(9,3);zeros(3,12)];
alpha = 0.2;
M(1,10) = -alpha;
M(5,11) = -alpha;
M(9,12) = -alpha; 
options = odeset('Mass',M,'RelTol',1e-3,'AbsTol',1e-3);
[T,Av] = ode15s(@(t,A)Adotxx(t,A,lambda), tspan, Azero, options); % Azero converted to vector style, this is another function
plot(T,Av(:,1))
function Aderiv = Adotxx(t, A, lambda)
  A = reshape(A,[3 4]).';
  Av = A(1:3,:);
  L = A(4,:);
  A = sym('A',[3 3]);
  LL = double(subs(lambda,A,Av)).';
  % differential equation
  Aderiv(1:3,1:3) = Av;
  Aderiv(4,1:3) = L - LL;
  Aderiv = reshape(Aderiv.',[12 1]);
end
추가 답변 (3개)
  Walter Roberson
      
      
 2022년 9월 24일
        You need to construct the formula for the eigenvalues of the derivative based on the equation for A. As you have a 3x3 matrix that will possibly involve the roots of a cubic equation. You must write them out in explicit form. This all must be calculated ahead of time.
Then inside you substitute particular numeric values into the equations inside your ode function. It is important that you do not use eig and sort, because those do not use consistent orders and so you would fail the requirements for continuous derivatives of your equations.
댓글 수: 6
  Torsten
      
      
 2022년 10월 28일
				So you think that the three formulae for the three different branches don't follow the roots continuously ? 
  Bruno Luong
      
      
 2022년 10월 28일
				Not differentiable continuously.
I think using consistent fomal radical formula doesn't ensure there is no branch swapping either.
  Torsten
      
      
 2022년 9월 26일
        
      편집: Torsten
      
      
 2022년 9월 27일
  
      See if it works. I cannot test it.
syms s
A = sym('A',[3 3]);
% Define characteristic polynomial
determinant = det(A-s*eye(3));
% Compute eigenvalues
lambda = solve(determinant==0,s,'MaxDegree',3)
% Compute d(lambda_k)/d(A(i,j))
for i = 1:3
  for j = 1:3
    for k = 1:3
      d(k,i,j) = diff(lambda(k),A(i,j))
    end
  end
end
tspan = [0:0.01:1];
Azero = [0.4 0.1 0; 0.1 0.4 0.1; 0 0.1 0.2];
Adotzero = zeros(3,3);
[T,Av] = ode15i(@(t,Av, Avd)Adotxx(t, Av, Avd, d), tspan, tens2vec(Azero), tens2vec(Adotzero)); % Azero converted to vector style, this is another function
function res = Adotxx(t, Av, Avd, d)
  A = sym('A',[3 3]);
  Av = vec2tens(Av); 
  Avd = vec2tens(Avd);
  d_num = zeros(3,3,3);
  for i = 1:3
    for j = 1:3
      for k = 1:3
	   d_num(k,i,j) = double(subs(d(k,i,j),A,Av));
	  end
    end
  end
  lambda_dot = zeros(3,1);
  for k =1:3
    lambda_dot(k) = 0.0;
    for i = 1:3
      for j = 1:3
	    lambda_dot(k) = lambda_dot(k) + d_num(k,i,j)*Avd(i,j);
	  end
    end
  end
  alpha = 1;
  f = @(A) A;
  res = Avd - f(Av) - alpha*diag(lambda_dot);
  res = tens2vec(res);
end
댓글 수: 4
  Torsten
      
      
 2022년 9월 27일
        
      편집: Torsten
      
      
 2022년 9월 27일
  
      Here is a numerical code to solve your problem.
It's risky to use this approach since - as Walter Roberson noted - the ordering of the eigenvalues coming from "eig" might change during the computation. This will cause wrong results.
Thus the suggested symbolic approach from above is more safe.
tspan=[0:0.01:1];
Azero= [0.4 0.1 0; 0.1 0.4 0.1; 0 0.1 0.2];
[~, lambda] = eig(Azero);
lambda=[lambda(1,1),lambda(2,2),lambda(3,3)];
Azero = [Azero;lambda];
for i=1:4
  for j=1:3
    Av((i-1)*3+j) = Azero(i,j);
  end
end
M = [eye(9),zeros(9,3);zeros(3,12)];
alpha = 0.2;
M(1,10) = -alpha;
M(5,11) = -alpha;
M(9,12) = -alpha;          
options = odeset('Mass',M);%,'RelTol',1e-8,'AbsTol',1e-8);
[T,Av] = ode15s(@Adotxx, tspan, Av, options); % Azero converted to vector style, this is another function
plot(T,Av(:,12))
%%
function Ad = Adotxx(t, A)
  for i=1:3
    for j=1:3
      Av(i,j) = A((i-1)*3+j);
    end
    L(i) = A(9+i);
  end
  [~, lambda] = eig(Av);
  lambda = [lambda(1,1),lambda(2,2),lambda(3,3)];
  % differential equation
  Aderiv(1:3,1:3) = Av;
  Aderiv(4,1:3) = L - lambda;
  for i=1:4
    for j=1:3
      Ad((i-1)*3+j) = Aderiv(i,j);
    end
  end
  Ad=Ad.';
end
댓글 수: 4
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!





