I have a problem with my detector , i get [bbox, score, label] empty.

조회 수: 1 (최근 30일)
abdullah al-dulaimi
abdullah al-dulaimi 2022년 7월 17일
답변: Shuba Nandini 2023년 9월 1일
%% detection
pp=alexnet;
pp1=pp.Layers;
pp=pp.Layers(1:19);
ppp=[pp
fullyConnectedLayer(2)
softmaxLayer()
classificationLayer()];
options = trainingOptions('sgdm', ...
'MiniBatchSize', 10, ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 1, ...
'CheckpointPath', tempdir);
train1 =trainFastRCNNObjectDetector(gTruth, ppp, options, ...
'NegativeOverlapRange', [0 0.1], ...
'PositiveOverlapRange', [0.5 1], ...
'SmallestImageDimension', 300);
img = imread('image (825).JPG');
[bbox, score, label] = detect(train1, img);
imshow(insertObjectAnnotation(img, 'rectangle', bbox, label));

답변 (1개)

Shuba Nandini
Shuba Nandini 2023년 9월 1일
Hello, 
It is my understanding that you want to train the trainFastRCNNObjectDetector” with ‘alexnet’ as the backbone network.
As per the documentation, “trainFastRCNNObjectDetector” function offers a functionality to automatically transform the backbone classification network, into a Fast R-CNN network by adding an ROI max pooling layer, classification layer and regression layer.
The above functionality can be achieved, by specifying the required classification network name for the “network” argument. 
Please refer to the following link, for further information, 
Hope this helps!
Regards,
Shuba Nandini

카테고리

Help CenterFile Exchange에서 Introduction to Installation and Licensing에 대해 자세히 알아보기

태그

제품

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by