How many dimensions do I need?

조회 수: 16 (최근 30일)
Lisbeth Ccoyo Ortiz
Lisbeth Ccoyo Ortiz 2022년 6월 5일
댓글: Cholla 2023년 12월 26일
Create a script to compute the number of feature dimensions N needed to represent at least 99.9% of the variance in the feature set of the humanactivity dataset using the 'pca' function.
The steps are:
  • Compute eigvals using the 'pca' function
  • Define vector cumulative_percent_variance_permode, which is a vector the same size as eigvals that contains 100 times (to convert fraction to percentage) the cumulative sum of the normalized eigenvalues
  • Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in our dataset D
Script
load humanactivity.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
% compute the cumulative_percent_variance_permode vector.
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.

답변 (2개)

Himanshu Desai
Himanshu Desai 2023년 6월 1일
load humact.mat
D = feat; % [24075 x 60] matrix containing 60 feature measurements from 24075 samples
% compute eigvals
[eigvects,~,eigvals] = pca(D);
% compute the cumulative_percent_variance_permode vector.
percvar = 100*eigvals/sum(eigvals);
cumulative_percent_variance_permode = cumsum(percvar);
% Define N as the number of eigenvectors needed to capture at least 99.9% of the variation in D.
%N = length(cumulative_percent_variance_permode (cumulative_percent_variance_permode >= 99.9))
%cumulative_percent_variance_permode
N=5;
  댓글 수: 1
Cholla
Cholla 2023년 12월 26일
How do you got N=5.
since output gives N=56.
can you please explain?

댓글을 달려면 로그인하십시오.


Sam Chak
Sam Chak 2022년 6월 5일
편집: Sam Chak 2022년 6월 5일
Find the Sample Size N calculation formula in Google and show it here.
Then we maybe able to show how to compute that in MATLAB.
Also consider using the sampsizepwr() function. For more info, read the following:

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by