Find the center of the cluster made from random spheres having different diameters

조회 수: 2 (최근 30일)
Hi,
I am making clusters using spheres having different diameters. The sphere's diameters and their center points are generated using random number generator. The diameters of the spheres lie between 0.1 and 0.5. I have to find the center point of the cluster which I generate. One idea I have is to take the average of all the spheres center points and it will be the center of the agglomerate but I am not sur if it is correct.
My code till now:
clear all; close all;
%% Data for Agglomerates
N = 50; % number of spheres
a = 0.1 ; % lowest diameter of sphere
b = 0.5 ; % highest diameter of sphere
Diam = a + (b-a).*rand(N,1);
% box dimensions that centers will fall in
xMax = 1;
yMax = 1;
zMax = 1;
% Generate random center points
x = rand(N,1)*xMax;
y = rand(N,1)*yMax;
z = rand(N,1)*zMax;
Axes = [x y z];
Data_agglo = [Diam Axes];
Data_Label ={'Diameter','X axis','Y axis','Z axis'};
R = Diam ./2;
%% Algorithm to find connected spheres and eliminate outliers-2
Data_agglo2 = Data_agglo;
% Find the minimum separation between sphere centers at which they will
% touch
Stouch = R + R'; % use scalar expansion between column and row to get every pair
% Find the distance between every pair of points, making use of scalar
% expansion of difference between a column and row to get every pair
S = sqrt((x-x').^2 + (y-y').^2 + (z -z').^2);
% Generate logical matrix whose elements are set to 1 (true) if the ith and
% jth sphere touch
Touch = S <= Stouch;
G = graph(Touch,'omitselfloops');
plot(G);
components = conncomp(G);
[gcnt,grp] = groupcounts(components(:));
[~,idx] = max(gcnt); % index of group with the most spheres
grpMax = grp(idx); % group number of the group with the most spheres
idxKeep = find(components == grpMax);
Data_agglo(~idxKeep,:) = [];
Data_agglo = Data_agglo(idxKeep,:);
R(~idxKeep,:) = [];
R = R(idxKeep,:);
%% To find the center of the agglomerates
%% generate mesh
dipS = 0.01;
xmin = min(Data_agglo(:,2)-R);
xmax = max(Data_agglo(:,2)+R);
ymin = min(Data_agglo(:,3)-R);
ymax = max(Data_agglo(:,3)+R);
zmin = min(Data_agglo(:,4)-R);
zmax = max(Data_agglo(:,4)+R);
% [Xgrid,Ygrid,Zgrid]= ndgrid(linspace(xmin,xmax,Nn), linspace(ymin,ymax,Nn), linspace(zmin,zmax,Nn));
[Xgrid,Ygrid,Zgrid]= ndgrid((xmin:dipS:xmax)-(xmin+xmax)/2,(ymin:dipS:ymax)-(ymin+ymax)/2,(zmin:dipS:zmax)-(zmin+zmax)/2);
Data_agglo(:,2:4) = Data_agglo(:,2:4) - [(xmin+xmax)/2,(ymin+ymax)/2,(zmin+zmax)/2];
%% get active dipoles
tic
active = false(size(Xgrid));
for i =1:1:size(Data_agglo,1)
active = active | (((Xgrid - Data_agglo(i,2)).^2 + (Ygrid - Data_agglo(i,3)).^2 + (Zgrid - Data_agglo(i,4)).^2) <= R(i).^2);
end
figure()
plot3(Xgrid(active),Ygrid(active),Zgrid(active),'o','MarkerFaceColor','red');
% hold on
% plot3(Xgrid(:),Ygrid(:), Zgrid(:),'.','MarkerFaceColor','blue');
axis equal
grid on
toc
Elapsed time is 0.368642 seconds.
active_dip = sum(sum(sum(active)));
volume = active_dip * dipS^3;
Before I generate the mesh, I want to find the center of the agglomerate whcih i generate
I also attach the sample file in .mat on how data for agglomerate looks like
Does anyone knows how it can be done?
  댓글 수: 8
Jon
Jon 2022년 6월 7일
I think the approach also depends upon what is physically occurring when the spheres "overlap". Do they still maintain their spherical geometry and somehow have twice the density in the overlap region?
If so, it is simple you can just compute the center of mass using the same equations you would use if they were not overlapping.
If the do not maintain their spherical geometry with twice the density in the overlap, but the original spheres conserve their mass, they must assume some new, non spherical shape. In that case wouldn't you need to know what these shapes were in order to compute the overall center of mass?
Walter Roberson
Walter Roberson 2022년 6월 7일
I wonder if it can be treated as accretion around seeds? Morphological dilation.
I thought this was an aggregate situation though, like concrete? Because in aggregates the density is not typically uniform, instead having denser centers such as stone, with the interstices filled in with a different material.

댓글을 달려면 로그인하십시오.

채택된 답변

Walter Roberson
Walter Roberson 2022년 6월 3일
편집: Walter Roberson 2022년 6월 3일
Your proposal is not correct.
Consider the case of a circle of radius 1 at (0, 0) and a second circle of negligible radius at (10, 0). You propose to average the centers of the circles, which would be (0 0) (10 0) giving a centroid at (5 0)
Now replace the first circle with the approximation (-1,0), (0,-1), (1,0), (0,1) each of negligible radius. The top/bottom, left/right of the original. The centroid of the left stays the same, so you propose that the overall centroid should be the same. Sum of the x coordinates of the 5 circles is 10, sum of the y coordinates is 0, but the number of circles is 5 so the average would be (2,0) not (5,0)
You have to multiply the centroid by the area and divide by the total area. https://www.geogebra.org/m/nbexg5v9

추가 답변 (1개)

Image Analyst
Image Analyst 2022년 6월 3일
If you wanted to do it numerically instead of analytically by creating a 3-D volumetric image then you could easily get the centroid with a call to regionprops3.

카테고리

Help CenterFile Exchange에서 Lighting, Transparency, and Shading에 대해 자세히 알아보기

제품


릴리스

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by