Looking for an Auto Differentiation package can be easily used as a function
조회 수: 1 (최근 30일)
이전 댓글 표시
I construct a neural network in MATLAB using the basic array since I have no experience in the neural network toolbox. Now I need to take the derivative of all the parameters, like weight, bias, which are inside the activation function.
Is there any package (library) in MATLAB that can help me to do the auto differentiation without changing my basic data structure?
clc
clear
global stackw
stackw=1;
Ninput=2;
Noutput=2;
Nneuron=3; % each layer
Nlayers=3; % hidden layer
inputdata=ones(Ninput,1);
NNstruc=[];
NNstruc(1)=Ninput;
NNstruc(2:(Nlayers+1))=Nneuron;
NNstruc=[NNstruc,Noutput];
wsize=sum(NNstruc(1:(end-1)).*NNstruc(2:end));
bsize=Nlayers+1;
wset=rand(wsize,1);
bset=rand(bsize,1);
for i=1:(length(NNstruc)-1)
temp=NNtrack(inputdata, NNstruc, wset, i);
temp=logsig(temp+bset(i));
inputdata=temp;
end
function [output] = NNtrack(x, NNconfig, w, index)
global stackw;
x=x(:);
current=NNconfig(index);
next=NNconfig(index+1);
Nw=current*next;
Nb=next;
wtemp=reshape(w(stackw:(stackw+Nw-1)),[next current]);
stackw=stackw+Nw;
temp=wtemp*x;
output =wtemp*x;
end
댓글 수: 0
답변 (1개)
Walter Roberson
2022년 5월 3일
편집: Walter Roberson
2022년 5월 4일
No, the available package would require changes to your data structure.
댓글 수: 2
Torsten
2022년 5월 3일
So you don't lack theoretical knowledge about neural networks, but you want to gain knowledge on how to use the Neural Network Toolbox ? Then usually its documentation together with the examples provided is the best tutorial.
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!