Matrix is singular, RCOND=NAN for a OLS regression

조회 수: 6 (최근 30일)
JoV
JoV 2022년 4월 24일
댓글: Bruno Luong 2022년 4월 25일
Hello all,
I am attempting to code an OLS regression, using a OLS-function of my own design. The code looks as follows:
Y = lntrentsa;
nobs = size(Y,1);
X = [ones(nobs,1), airbnbsa, airbrnb*oorate10];
knum = size(X,2);
b = inv(X'*X) * X'*Y;
However, I am unable to get an output for b(eta) as I get the error message:
Warning: Matrix is singular, close to singular or badly scaled. Results may be inaccurate. RCOND = NaN
Would anyone know why this might be? Which Matrix does the error message mean? I have attempted rewriting b but I still only get Nan values:
b = (X'*X)\ X'*Y
My dataset is quite large (nobs = 745776), could this perhaps have an influence?
I'd be grateful for any advice! Thank you

답변 (1개)

Bruno Luong
Bruno Luong 2022년 4월 24일
편집: Bruno Luong 2022년 4월 24일
First make sure your data X and Y contain only finite elements (no NaN, Inf, or such).
Instead of
b = inv(X'*X) * X'*Y;
try (R2018a or later required)
[XN,C,S] = normalize(X);
b = ((XN+C./S)\Y) ./ S.';
  댓글 수: 3
Bruno Luong
Bruno Luong 2022년 4월 24일
편집: Bruno Luong 2022년 4월 24일
So may be your matrix is really singular (rank(X) < 3), in this case you migh wanr to do
b = pinv(X'*X) * X'*Y;
or
[XN,C,S] = normalize(X);
XN = (XN+C./S);
b = (pinv(XN'*XN) * XN'*Y) ./ S.';
But MATLAB warning is still valid: the result may be innacurate, simply your data are not allowed to observe whatever the parameters b you want to compute.
Bruno Luong
Bruno Luong 2022년 4월 25일
You might also want to experiment with different method of normalizing, e.g.,
[XN,C,S] = normalize(X,'medianiqr')

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Linear Least Squares에 대해 자세히 알아보기

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by