Negative semidefinteness and schur complement

조회 수: 13 (최근 30일)
Arjun M
Arjun M 2022년 4월 21일
답변: Manikanta Aditya 2024년 1월 12일
Hello all,
I am trying an optimization problem where I have the condition A - BC-1D < 0, C > 0 as a constraint. How can I convert this into LMI form using schur complement?

답변 (1개)

Manikanta Aditya
Manikanta Aditya 2024년 1월 12일
Hi!
As you are trying an optimization problem where you have the conditions A – BC – 1D < 0, C > 0 as a constraint. You are interested to know how you can convert it into LMI form using the Schur complement.
The Schur complement is a powerful tool for dealing with matrix inequalities and can be used to convert your constraint into Linear Matrix Inequality (LMI) form.
Given a block matrix of the form:
[A B]
[C D]
where A is invertible, the Schur complement of A in this matrix is defined as DCA^-1B.
In your case, you have the inequality ABC^−1D < 0, which can be rewritten as ABC^−1D=−S < 0, where 'S' is the 'Schur' complement.
The inequality C > 0 ensures that C is positive definite, which is a common requirement in LMI problems.
So, your constraints can be written in LMI form as S > 0 and C > 0.
Try checking the below links to know more about:

카테고리

Help CenterFile Exchange에서 Matrix Computations에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by