10 fold cross validation
    조회 수: 11 (최근 30일)
  
       이전 댓글 표시
    
채택된 답변
  Demet
      
 2022년 4월 19일
        
      편집: Demet
      
 2022년 4월 19일
  
      Hello,
I have never used Multilayer extreme learning machine but i found this. The code below was written assuming that the code in this link is correct and It would be helpful for you
data= dlmread('data\\inputs1.txt'); %inputs
groups=dlmread('data\\targets1.txt'); % target
Fold=10;
indices = crossvalind('Kfold',length(groups),Fold);
for i =1:Fold
    testy = (indices == i);   
    trainy = (~testy);   
    TestInputData=data(testy,:)'; 
    TrainInputData=data(trainy,:)';
    TestOutputData=groups(testy,:)'; 
    TrainOutputData=groups(trainy,:)';
    number_neurons=[1000 100 100 100];% acchetecture of network
    NL=4;
    ELM_Type=1;
    [training_Acuracy]=MLP_elm_train(TrainInputData,TrainOutputData,number_neurons,ELM_Type,NL);%training
    training_Acuracy_f(fold)=training_Acuracy; %keep training acc for each fold
    [testing_Accuracy,output]=MLP_elm_predict(TestInputData, TestOutputData,ELM_Type,NL);%testing
    testing_Accuracy_f(Fold)=testing_Accuracy;% keep testing acc for each fold
end
추가 답변 (1개)
참고 항목
카테고리
				Help Center 및 File Exchange에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

