10 fold cross validation
조회 수: 12 (최근 30일)
이전 댓글 표시
채택된 답변
Demet
2022년 4월 19일
편집: Demet
2022년 4월 19일
Hello,
I have never used Multilayer extreme learning machine but i found this. The code below was written assuming that the code in this link is correct and It would be helpful for you
data= dlmread('data\\inputs1.txt'); %inputs
groups=dlmread('data\\targets1.txt'); % target
Fold=10;
indices = crossvalind('Kfold',length(groups),Fold);
for i =1:Fold
testy = (indices == i);
trainy = (~testy);
TestInputData=data(testy,:)';
TrainInputData=data(trainy,:)';
TestOutputData=groups(testy,:)';
TrainOutputData=groups(trainy,:)';
number_neurons=[1000 100 100 100];% acchetecture of network
NL=4;
ELM_Type=1;
[training_Acuracy]=MLP_elm_train(TrainInputData,TrainOutputData,number_neurons,ELM_Type,NL);%training
training_Acuracy_f(fold)=training_Acuracy; %keep training acc for each fold
[testing_Accuracy,output]=MLP_elm_predict(TestInputData, TestOutputData,ELM_Type,NL);%testing
testing_Accuracy_f(Fold)=testing_Accuracy;% keep testing acc for each fold
end
추가 답변 (1개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!