REINFORCE algorithm- unable to compute gradients on latest toolbox version
조회 수: 1 (최근 30일)
이전 댓글 표시
The LSTM actor network inputs 50 timestep data of three states. Therefore a state is of dimension 3x50.
For computing gradients, the input data in the forllowing format
num_states x batchsize x N_TIMESTEPS = (3x1)x50x50.
In Reinforcement Learning toolbox version 1.3, the following line works perfectly.
% actor- the custom actor network , actorLossFunction- custom loss fn, lossData- custom variable
actorGradient = gradient(actor,@actorLossFunction,{reshape(observationBatch,[3 1 50 50])},lossData);
However, when I run the same code in the latest RL toolbox version 2.2, I get the following error:
------------------------------------------------------------------------------------------------------------------------------------------------------
Error using rl.representation.rlAbstractRepresentation/gradient
Unable to compute gradient from representation.
Error in simpleRLTraj (line 184)
actorGradient= gradient(actor,@actorLossFunction,{reshape(observationBatch,[3 1 50 50])},lossData);
Caused by:
Error using extractBinaryBroadcastData
dlarray is supported only for full arrays of data type double, single, or logical, or for full gpuArrays of
these data types.
------------------------------------------------------------------------------------------------------------------------------------------------------
I tried tracing back to the error but it get more complicated. How do I get an error for a code that works perfectly on the earlier version of RL toolbox?
댓글 수: 0
채택된 답변
Joss Knight
2022년 4월 5일
편집: Joss Knight
2022년 4월 5일
What is
underlyingType(observationBatch)
underlyingType(lossData)
?
댓글 수: 5
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!