How to train Network Using Custom Training Loop for Semantic segmentation?

조회 수: 3 (최근 30일)
zhou lifan
zhou lifan 2022년 4월 4일
답변: Aneela 2024년 9월 13일
Hi, because I want to use two outputs for Semantic segmentation, so I have to train network using custom training loop. My question is how to achieve this?

답변 (1개)

Aneela
Aneela 2024년 9월 13일
Hi zhou,
Training a neural network with two outputs for semantic segmentation using a custom training loop involves the following key steps:
  • Define a network architecture that has two outputs. Here’s a sample network architecture with two output layers.
layers = [
imageInputLayer([256 256 3],'Name','input')
convolution2dLayer(3,64,'Padding','same','Name','conv1')
reluLayer('Name','relu1')
%numClasses1, numClasses2-Replace them with the number of classes in your datasets
convolution2dLayer(1, numClasses1, 'Name', 'convOut1')
softmaxLayer('Name','softmax1')
pixelClassificationLayer('Name','output1')
convolution2dLayer(1, numClasses2, 'Name', 'convOut2')
softmaxLayer('Name','softmax2')
pixelClassificationLayer('Name','output2')];
Hope this helps!

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by