store performance coefficient of different iterations in a vector
조회 수: 3 (최근 30일)
이전 댓글 표시
Hi everyone,
I developped a code for function approximation using neuralnetworks. the perfoamnce of each iteration is estimated using a performation coefficient (nse).
I want to store every nse coefficint of each iteration in a vector.
nse1=0.1;
% ANN Model--------------------------------
while nse1 < 0.44;
net=feedforwardnet([5 20 10]);
net.divideParam.trainRatio=0.7;
net.divideParam.testRatio=0.15;
net.divideParam.valRatio=0.15;
net.trainParam.lr=0.001;
net.trainParam.min_grad=1e-20;
net.trainParam.goal=1e-3;
net.trainParam.epochs=1000;
net.trainParam.show=20;
net.trainParam.max_fail=1000;
net.trainFcn = 'trainlm';
net.trainParam.mu=0.01;
% init_net = init(net);
net=train(net,ANN_Inputs,ANN_Target);
net_output1=net(ANN_Inputs);
Obs=ANN_Target';
Sim=net_output1';
% R2 = calculateR2(Obs,Sim)
nse1 = NSE(Obs,Sim)
end
댓글 수: 0
채택된 답변
Rik
2022년 3월 14일
편집: Rik
2022년 3월 14일
Following the standard strategy:
nse1_vector=NaN(1,1000);
nse1_vector(1)=0.1;
nse1_index=1;
% ANN Model--------------------------------
while nse1_vector(nse1_index) < 0.44;
net=feedforwardnet([5 20 10]);
net.divideParam.trainRatio=0.7;
net.divideParam.testRatio=0.15;
net.divideParam.valRatio=0.15;
net.trainParam.lr=0.001;
net.trainParam.min_grad=1e-20;
net.trainParam.goal=1e-3;
net.trainParam.epochs=1000;
net.trainParam.show=20;
net.trainParam.max_fail=1000;
net.trainFcn = 'trainlm';
net.trainParam.mu=0.01;
% init_net = init(net);
net=train(net,ANN_Inputs,ANN_Target);
net_output1=net(ANN_Inputs);
Obs=ANN_Target';
Sim=net_output1';
% R2 = calculateR2(Obs,Sim)
nse1_index=nse1_index+1;
nse1_vector(nse1_index) = NSE(Obs,Sim);
fprintf('nse (it %d) = %.1f\n',nse1_index,nse1_vector(nse1_index))
end
nse1_vector((nse1_index+1):end)=[];
You can probably move a lot of that code outside of the loop, but I don't know enough of your application to suggest what exactly. Code that does not depend on the previous iteration should not be in the loop itself.
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Data Import and Export에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!