How to control for Nuisance variables in the logistic regression using fitglm(T,'​Distributi​on','binom​ial')?

조회 수: 2 (최근 30일)
How to control for Nuisance variables in the logistic regression using fitglm(T,'Distribution','binomial')?

답변 (1개)

Vaibhav
Vaibhav 2023년 12월 27일
Hi Weixi
It is my understanding that you would like to include nuisance variables in the logistic regression using "fitglm" function.
Nuisance variables can be controlled by including them as additional predictor variables in the model. Including nuisance variables helps to account for their potential impact on the response variable and can improve the accuracy of the logistic regression model.
Here is an example to include nuisance variables in logistic regression using "fitglm":
% Generate some example data
rng(1); % For reproducibility
X1 = randn(100, 1); % Predictor variable 1
X2 = randn(100, 1); % Predictor variable 2
NuisanceVar = randn(100, 1); % Nuisance variable
Y = randi([0, 1], 100, 1); % Binary response variable
% Create a table with predictor and response variables
T = table(X1, X2, NuisanceVar, Y, 'VariableNames', {'X1', 'X2', 'NuisanceVar', 'Y'});
% Specify the logistic regression model
formula = 'Y ~ X1 + X2 + NuisanceVar';
% Fit the logistic regression model
mdl = fitglm(T, formula, 'Distribution', 'binomial');
% Display the model summary
disp(mdl);
Generalized linear regression model: logit(Y) ~ 1 + X1 + X2 + NuisanceVar Distribution = Binomial Estimated Coefficients: Estimate SE tStat pValue ________ _______ _______ _______ (Intercept) 0.18645 0.20492 0.90986 0.3629 X1 0.12591 0.20649 0.60975 0.54203 X2 0.11957 0.20778 0.57549 0.56496 NuisanceVar 0.20014 0.23331 0.85781 0.391 100 observations, 96 error degrees of freedom Dispersion: 1 Chi^2-statistic vs. constant model: 1.36, p-value = 0.716
You can refer to the following MathWorks documentation link to know more about "fitglm" function:
Hope this helps!

제품


릴리스

R2018a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by