how to design custom ANN using Deep Network designer app MATLAB

조회 수: 4 (최근 30일)
Med Future
Med Future 2022년 2월 28일
댓글: yanqi liu 2022년 3월 1일
Hello Everyone, I Hope you are doing well.
I want to create a simple ANN using Deep network Designer app or using code.
ANN contain input layer, 10 neurons in hidden layer with sigmoid activation and output layer with classifciaton and softmax layer
I have the dataset of shape 250x1000. I have attached the dataset below. which contain label as well.
I also want to be label in catogorical form . Like 1 name as 'Class1'
How can i do it in MATLAB

채택된 답변

yanqi liu
yanqi liu 2022년 3월 1일
clc; clear all; close all;
load Datasetn
layers = [
imageInputLayer([1000 1 1])
fullyConnectedLayer(10)
reluLayer
fullyConnectedLayer(5)
softmaxLayer
classificationLayer];
opts = trainingOptions('adam', ...
'MaxEpochs',200, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
xc = reshape(dataset', [1000,1,1,250]);
% 'Class1'
yc = [];
for i = 1 : length(label)
yc{i,1} = ['Class' num2str(double(label(i)))];
end
yc = categorical(yc);
disp(yc)
net = trainNetwork(xc,yc,layers,opts);
  댓글 수: 2
Med Future
Med Future 2022년 3월 1일
@yanqi liu Can i divide the dataset between 80% train and 20% test?
yanqi liu
yanqi liu 2022년 3월 1일
yes,sir
clc; clear all; close all;
load Datasetn
idx = randperm(length(label)) ;
dataset = dataset(idx,:);
label = label(idx,:);
m = round(length(label)*0.8) ;
dataset1 = dataset(1:m,:); label1 = label(1:m,:);
dataset2 = dataset(1+m:end,:); label2 = label(1+m:end,:);
layers = [
imageInputLayer([1000 1 1])
fullyConnectedLayer(10)
reluLayer
fullyConnectedLayer(5)
softmaxLayer
classificationLayer];
opts = trainingOptions('adam', ...
'MaxEpochs',200, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false, ...
'ExecutionEnvironment', 'cpu', ...
'ValidationPatience',Inf);
xc = reshape(dataset1', [1000,1,1,m]);
% 'Class1'
yc = [];
for i = 1 : length(label1)
yc{i,1} = ['Class' num2str(double(label1(i)))];
end
yc = categorical(yc);
disp(yc)
net = trainNetwork(xc,yc,layers,opts);

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

제품


릴리스

R2021b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by