Summary table of machine learning model

조회 수: 5 (최근 30일)
murad subih
murad subih 2022년 2월 6일
답변: Himanshu 2025년 5월 16일
I am training some models of ML using Matlab to predict output.After I trained and tested the models ,I want to know the summary table for all models (slope,intercept,Brier scores,Auc),which function can I use to see the summary of trained models? Thanks

답변 (1개)

Himanshu
Himanshu 2025년 5월 16일
Hello,
To create a summary table of metrics (slope, intercept, Brier score, AUC) for multiple trained models in MATLAB, you can manually extract these values using model-specific properties and evaluation functions.
In MATLAB, you can construct it by combining outputs from functions like "coefCI" (for linear models), "predict", "loss", and "perfcurve" (for AUC).
Please refer to the attached documentations for more information.
  1. Confidence intervals of coefficient estimates of linear regression model - https://www.mathworks.com/help/stats/linearmodel.coefci.html
  2. Compute deep learning network output for inference - https://www.mathworks.com/help/deeplearning/ref/dlnetwork.predict.html
  3. Regression loss for linear regression models - https://www.mathworks.com/help/stats/regressionlinear.loss.html
  4. Receiver operating characteristic (ROC) curve or other performance curve for classifier output - https://www.mathworks.com/help/stats/perfcurve.html
I hope this helps.

카테고리

Help CenterFile Exchange에서 ROC - AUC에 대해 자세히 알아보기

제품


릴리스

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by