HELP :( high learning error or low performance in neural network classifying ?

조회 수: 6 (최근 30일)
Fereshteh....
Fereshteh.... 2014년 11월 21일
편집: Greg Heath 2014년 11월 23일
i did write this code, it is a simple code to classify 685, twelve dimensional data in to 3 classes, class 1 and 2 and 3 , my classifier is a neural network , i have no idea what wrong is with my code that my learning error (pf)is so high and it is around 0.4 - 0.6. no matter what i do it doesn't get any lower, i need it to be very lower for example 0.02 or 0.04 , i couldn't load my input matrix here due to it is so big , is there anyone to help me please ??? i change the number of my hidden nodes from 6 up to 400 but no improvement achieved , i also changed the number of epochs but again nothing :((((
if true
clc;
close all;
clear all;
load('E:\all uni stuff\thesis\data feature\CRQA_sort_ICA.mat') xs=CRQA_gham_sort; xn=CRQA_khonsa_sort; xh=CRQA_shad_sort; xs(:,:,12)=[]; xs(:,:,7)=[]; xn(:,:,12)=[]; xn(:,:,7)=[]; xh(:,:,12)=[]; xh(:,:,7)=[];
st.f1=reshape(xh(:,5,:),207,11); st.f2=reshape(xs(:,5,:),237,11); st.f3=reshape(xn(:,5,:),241,11); k1=[st.f1;st.f2;st.f3];
D1=ones(1,207); D2=2*ones(1,237); D3=3*ones(1,241); DD=[D1 D2 D3]'; m=[DD,k1]; n=size(m,1); p=randperm(n); m=m(p,:); D=m(:,1); k=m(:,2:12); %--------------------------original------------
%%%D=D'; OL=[k(1:157,:);k(208:394,:);k(445:635,:)]'; DL=[D(1:157,:);D(208:394,:);D(445:635,:)]'; %D1=zeros(1,157); %D2=ones(1,187); %D3=2*ones(1,191); %DL=[D1 D2 D3]; %--------------------------learning phase----------------------------
%size(OL); %size(DL);
%%k=k'; % net = newff(OL,DL,20); % net = train(net,OL,DL); % outputs = net(OL); % errors = outputs -DL ; % perf = perform(net,outputs,DL) % net=newff(OL,DL,[9,3]); % net=newff(OL,DL,5); %net=newff(OL,[6,4,1],{'tansig' 'tansig' 'purelin'},'traincgf'); net=newff(minmax(OL),[10,1],{'tansig' 'purelin'},'trainlm'); %net=newff(minmax(k),[8,1],{'tansig' 'purelin'},'trainlm'); net.trainParam.epochs=500; %net.trainparam.lr=0.002; net=train(net,OL,DL); YL=sim(net,OL); E_oL=mse(YL-DL) % my learning error %net=train(net,k,D); %YL=sim(net,k); %E_oL=mse(YL-D)
end
  댓글 수: 1
Greg Heath
Greg Heath 2014년 11월 23일
편집: Greg Heath 2014년 11월 23일
No one will respond until you format the code.
An unscaled value of MSE means ABSOLUTELY NOTHING ... unless, for example, it is normalized by the average target variance!
NMSE = mse(t-y)/mean(var(t',1)) % Should be in [ 0,1 ];
My goal is NMSE < 0.01 so that the net models more than 99% of the target variance
I also recommend that you try the code on a MATLAB classifier dataset For example
[ x, t] = iris_dataset;

댓글을 달려면 로그인하십시오.

답변 (0개)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by