The pooled covariance matrix of TRAINING must be positive definite.

조회 수: 8 (최근 30일)
sun rise
sun rise 2022년 1월 21일
댓글: sun rise 2022년 1월 29일
clc
clear all
load featurs_T
load featurs_S
load Group_Train
load Group_Test
cv_x=cov(Feat1);
[V,D] = eig(cv_x);
d=diag(D);
d=d(end:-1:1);
sm_d=cumsum(d) /sum(d);
idx=find(sm_d>0.99);
T=[V(:,end:-1:idx(1))]';
new_feat1=T*Feat1';
%TrainingSet= new_feat1';
new_feat2=T*Feat2';
%TestSet= new_feat2';
TrainingSet = new_feat1';
TestSet = new_feat2';
Group_Train1 = Group_Train1';
Group_Test1 = Group_Test1';
%------------------------
% result1= multisvm(TrainingSet,Group_Train1,TestSet,Group_Test1);
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
testresult = result1;
Accuracy = mean(Group_Test1==result) * 100;
fprintf('Accuracy = %.2f\n', Accuracy);
fprintf('error rate = %.2f\n ', mean(result ~= Group_Test1 ) * 100);
Error using classify (line 233)
The pooled covariance matrix of TRAINING must be positive definite.
Error in HOG2 (line 31)
result1= classify(TestSet,TrainingSet,Group_Train1,'linear');
  댓글 수: 5
sun rise
sun rise 2022년 1월 24일
I actually used pca to reduce dimensions. But the error is still there
sun rise
sun rise 2022년 1월 29일
Feat1 = pca(Feat1);
Feat2 = pca (Feat2);
But why is pca decreasing the number of images and thus I get this error
The length of GROUP must equal the number of rows in TRAINING.
This is evident in the workspace

댓글을 달려면 로그인하십시오.

채택된 답변

Matt J
Matt J 2022년 1월 23일
I suggest you calculate the pooled covariance matrix and verify whether the error message is accurate.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

제품


릴리스

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by