Evaluating Multi-Class Image Classification
    조회 수: 3 (최근 30일)
  
       이전 댓글 표시
    
                                            Here I written a code for evaluating multi class image classification. Kindly correct if I'm wrong C=confusionmat(Yactual,YPred)
[row,col]= size(C);
n_class=row;
for i=1:n_class
                        TP(i)=C(i,i);
                        FN(i)=sum(C(i,:))-C(i,i);
                        FP(i)=sum(C(:,i))-C(i,i);
                        TN(i)=sum(C(:))-TP(i)-FP(i)-FN(i);    
end
            TP1=sum(TP)
            FP1=sum(FP)
            FN1=sum(FN)
            TN1=sum(TN)
            Accuracy=(TP1+TN1)/(TP1+TN1+FP1+FN1)
            Error=1-Acc
            Recall=TP1/(TP1+FN1)
            Precision=TP1/(TP1+FP1)
            Specificity = TN1/(TN1+FP1)
            Sensitivity = TP1/(TP1+FN1)
            FPR=1-Specificity
            beta=1;
            F1_score=( (1+(beta^2))*(Recall.*Precision)) ./ ( (beta^2)*(Precision+Recall))
I want to know above code is correct or not? 
and also when I'm using accuracy = mean(YPred == Yactual) it gives precision value. why?
kindly help me in this regard. Thank you. 
댓글 수: 0
답변 (0개)
참고 항목
카테고리
				Help Center 및 File Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!