how to denoising rgb image?

조회 수: 2 (최근 30일)
majid
majid 2022년 1월 10일
댓글: Bjorn Gustavsson 2022년 1월 11일
hello i have a question about rgb image denoising. I have a noisy image and when i apply the filter ; the color of image is chang.i want to know why it is happen and how can i get rid of it it? here is my codes and results: clear all clc
exfilt={'*.jpg;*.png'};
[filename,filepath]= uigetfile(exfilt,'pick an image file!');
I=imread ([filepath filename]);
figure,imshow(I);
colormap(jet(256));colorbar;
title('Overlay Image');
[rows, columns, numberOfColorBands] = size(I);
%%adding noise
%speckle noise
SI=imnoise(I,'speckle',0.5);
% adding salt and pepper noise or shot noise
Shot_noise = imnoise(I, "salt & pepper", 0.50);
% total noise
noisy_image=I+SI+Shot_noise;
figure
subplot(1, 4, 1);
imshow(noisy_image);
title('noisy Image1');
% Extract the individual red, green, and blue color channels.
redChannel = noisy_image(:, :, 1);
greenChannel = noisy_image(:, :, 2);
blueChannel = noisy_image(:, :, 3);
% Display the noisy channel images.
subplot(1, 4, 2);
imshow(redChannel);
title('Noisy1 Red Channel');
subplot(1, 4, 3);
imshow(greenChannel);
title('Noisy1 Green Channel');
subplot(1, 4, 4);
imshow(blueChannel);
title('Noisy1 Blue Channel');
%%multiple level median image processing technique
k=2;
hwin=2*k+1;
im_redChannel= padarray(redChannel, [k k],'replicate'); % 'zero-padding'
im_greenChannel= padarray(greenChannel, [k k],'replicate'); % 'zero-padding'
imblueChannel= padarray(blueChannel, [k k],'replicate'); % 'zero-padding'
% imshow(im);
n=5;
[row,col] = size(im_redChannel);
% X Mask
x_diag_up=zeros(hwin,hwin);
x_diag_up(1:n+1:n*n)=1;
x_diag_down=zeros(hwin,hwin);
x_diag_down(n:n-1:n*n-1)=1;
%plus Mask
plus_up=zeros(hwin,hwin);
plus_up(:,3)=1;
plus_right=zeros(hwin,hwin);
plus_right(3,:)=1;
x_diag_up_find =find(x_diag_up); % x pixel positions
x_diag_down_find=find(x_diag_down); % x pixel positions
plus_up_find=find(plus_up); % + pixel position
plus_right_find=find(plus_right); % + pixel position
for p=1:row-4
for q=1:col-4
w_redChannel=im_redChannel(p:p+(hwin-1),q:q+(hwin-1));%sliding window / filter
sw_redChannel=w_redChannel(:)'; %sliding window elements
x_diag_up_val=w_redChannel(x_diag_up_find)';
x_diag_down_val=w_redChannel(x_diag_down_find)';
plus_up_val=w_redChannel(plus_up_find)';
plus_right_val=w_redChannel(plus_right_find)';
c_val=w_redChannel(13);
%Original pixel/ center pixel of the window/filter
M1=(median(x_diag_up_val));
M2=(median(x_diag_down_val));
M3=(median( plus_up_val));
M4=(median(plus_right_val));
median_val=[M1,M2,M3,M4];
minimum=min(median_val);
maximum=max(median_val);
M5=ceil(c_val);
Res_med=[minimum,maximum,M5];
out_redChannel(p,q)=(median(Res_med));
end
end
for p=1:row-4
for q=1:col-4
w_greenChannel=im_greenChannel(p:p+(hwin-1),q:q+(hwin-1));%sliding window / filter
sw_greenChannel=w_greenChannel(:)'; %sliding window elements
x_diag_up_val1=w_greenChannel(x_diag_up_find)';
x_diag_down_val1=w_greenChannel(x_diag_down_find)';
plus_up_val1=w_greenChannel(plus_up_find)';
plus_right_val1=w_greenChannel(plus_right_find)';
c_val1=w_greenChannel(13);
%Original pixel/ center pixel of the window/filter
MM1=(median(x_diag_up_val1));
MM2=(median(x_diag_down_val1));
MM3=(median( plus_up_val1));
MM4=(median(plus_right_val1));
median_val1=[MM1,MM2,MM3,MM4];
minimum1=min(median_val1);
maximum1=max(median_val1);
MM5=ceil(c_val1);
Res_med1=[minimum1,maximum1,MM5];
out_greenChannel(p,q)=(median(Res_med1));
end
end
for p=1:row-4
for q=1:col-4
w_blueChannel=imblueChannel(p:p+(hwin-1),q:q+(hwin-1));%sliding window / filter
sw_blueChannel=w_blueChannel(:)'; %sliding window elements
x_diag_up_val2=w_blueChannel(x_diag_up_find)';
x_diag_down_val2=w_blueChannel(x_diag_down_find)';
plus_up_val2=w_blueChannel(plus_up_find)';
plus_right_val2=w_blueChannel(plus_right_find)';
c_val2=w_blueChannel(13);
%Original pixel/ center pixel of the window/filter
MMM1=(median(x_diag_up_val2));
MMM2=(median(x_diag_down_val2));
MMM3=(median( plus_up_val2));
MMM4=(median(plus_right_val2));
median_val2=[MMM1,MMM2,MMM3,MMM4];
minimum2=min(median_val2);
maximum2=max(median_val2);
MMM5=ceil(c_val2);
Res_med2=[minimum2,maximum2,MMM5];
out_blueChannel(p,q)=(median(Res_med2));
end
end
restored_image = cat(3, out_redChannel, out_blueChannel, out_greenChannel);
figure
subplot(131)
imshow(I)
title(" Original image");
subplot(132)
imshow(noisy_image)
title(" noisy image");
subplot(133)
imshow(restored_image)
title(" restored image");

채택된 답변

Bjorn Gustavsson
Bjorn Gustavsson 2022년 1월 10일
Well nothing but a simple goof. You simply swapped the green and blue channels in this line:
restored_image = cat(3, out_redChannel, out_blueChannel, out_greenChannel);
Try:
restored_image = cat(3, out_redChannel, out_greenChannel, out_blueChannel);
That should be it.
HTH
  댓글 수: 2
majid
majid 2022년 1월 11일
thankyou very much
Bjorn Gustavsson
Bjorn Gustavsson 2022년 1월 11일
Glad it solved your problem.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Image Filtering and Enhancement에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by