Convolution Neural network for regression problems

조회 수: 17 (최근 30일)
Jahetbe
Jahetbe 2022년 1월 10일
댓글: yanqi liu 2022년 2월 10일
Hi everyone
I want to use CNN for my problem. The existing examples in the MATLAB (Here) provided for images as 4-D arrays but my problem is as follows:
Inputs = N (78000,24)
Output = Y(78000,1)
How can I use the mentioned examples for my problem?
Thanks in advanced.
  댓글 수: 1
KSSV
KSSV 2022년 1월 10일
편집: KSSV 2022년 1월 10일
You can use NN toolbox right? Attach your data and tell us about your data, lets give a try to help you.

댓글을 달려면 로그인하십시오.

채택된 답변

yanqi liu
yanqi liu 2022년 1월 11일
yes,sir,may be use rand data to simulate your application,then you can replace data,such as
clc; clear all; close all;
% Inputs = N (78000,24);
% Output = Y(78000,1);
Inputs = randn(78000,24);
Output = rand(78000,1);
% get input data matrix
XTrain=(reshape(Inputs', [24,1,1,78000]));
YTrain=Output;
layers = [imageInputLayer([24 1 1])
convolution2dLayer([15 1],3,'Stride',1)
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2,'Padding',[0 0 0 1])
dropoutLayer
fullyConnectedLayer(1)
regressionLayer];
miniBatchSize = 128;
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',30, ...
'InitialLearnRate',1e-3, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',20, ...
'Shuffle','every-epoch', ...
'Plots','training-progress', ...
'Verbose',false);
net = trainNetwork(XTrain,YTrain,layers,options);
  댓글 수: 3
Jahetbe
Jahetbe 2022년 2월 10일
Thank you for your answered.
Could you please help me to improve the accuracy of model?
I cannot find any optimum stduture to find my data not only when considered data for training and validations, but also when considered all of them for training.
Regards,
yanqi liu
yanqi liu 2022년 2월 10일
yes,sir,just send data to me

댓글을 달려면 로그인하십시오.

추가 답변 (1개)

Jahetbe
Jahetbe 2022년 1월 10일
Dear @KSSV
Thank you for your response.
I want to use CNN to solve my problem.
My data is as follows.
Inputs = [ x11 x12 x13 x14
x21 x22 x23 x24
. . . .
xN1 xN2 XN3 XN4]
Outputs = [ Y11
Y21
.
.
.
.
YN1 ]
Wher N is the number of samples (i.e., 78000)

카테고리

Help CenterFile Exchange에서 Deep Learning Toolbox에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by