필터 지우기
필터 지우기

Roots of Polynomial in for Loop

조회 수: 1 (최근 30일)
MarshallSc
MarshallSc 2022년 1월 2일
댓글: Matt J 2022년 1월 2일
I have these two vectors that are the 2nd and zero order coefficients:
R = [0.0068 0.0036 0.000299 0.0151];
H = [0.0086 0.00453 0.0016 0.00872];
For the equation:
func = @(x) (R - (x * x) * H);
My first question is how can I index each of the elements in the equation such that I have something like this:
func = @(x) (R(i) - (x(j) * x(k)) * H(l)) % i,j,k,l = 1:4
So for one index, the equation would be (with many roots):
f1 = @(x) 0.0068 - (x(2)*x(3) * 0.00872); % R(1) - x(2)*x(3) * H(4);
x0 = [0,0];
solve = fzero(f1,x0)
So writing all the equations, and using quadratic optimization for the simultaneous equations, the roots can be found.
But obviously this function handle would not work when indexing is needed. Is there any way to express the equation so that even the independent variable can be indexed? I know there is a way to index other components than the independent such:
for i = 1:4
for j = 1:4
f = sprintf('@(x) %f- (x*x)*%f;', R(i), H(i));
r = str2func(f)
end
end
But I'm looking to index the variables too so that I can finally get the minimum roots of this quadratic equation:
(x(j)*x(k)) * H(l) + (x(i)*x(l)) * H(k) + (x(k)*x(j)) * H(j) + (x(l)*x(i)) * H(i) = ...
R(i) + R(j) + R(k) + R(l)
My objective is to find the roots that minimizes the above equation, by having the coefficient of the quadratic equation that run through a loop (H(i) & R(j) are given). There is not speicifc constraint rather than interchanging the indices of the equation elements to conserve the symmetry and momentum.
I tried to use fmincon but I don't know how to assign the indexed function handle into the function and using random intial complex roots, get all the possible roots.
I posted a similar question but I think I was not very clear in my statement.
  댓글 수: 5
MarshallSc
MarshallSc 2022년 1월 2일
Well, because the roots will give me information about the curvature in the system and my goal was to solve it in a way that gives me the optimum value.
Let's forget about the minimum, sorry if it made confusion, can the roots be found by having such a constraint - which is the (i;j) and (k;l) pair must be exchangeable?
Matt J
Matt J 2022년 1월 2일
편집: Matt J 2022년 1월 2일
Let's forget about the minimum, sorry if it made confusion, can the roots be found by having such a constraint - which is the (i;j) and (k;l) pair must be exchangeable?
If you mean that you want to solve the simultaneous equations,
then the answer is no. This is an overdetermined system of 256 equations in 4 unknowns, so it will probably not have an exact solution. You could seek a least squares solution, but that would require that you minimize something.

댓글을 달려면 로그인하십시오.

채택된 답변

Matt J
Matt J 2022년 1월 2일
편집: Matt J 2022년 1월 2일
I don't understand your description of the objective function. The roots of a multivariable function are not scalars, and therefore are not something you can "minimize". However, the nonlinear constraint fucntion to fmincon would look like this:
R = [0.0068 0.0036 0.000299 0.0151];
H = [0.0086 0.00453 0.0016 0.00872];
objective=____;
x=fmincon(objective,A,b,Aeq,beq,lb,ub,@(x) nonlcon(x,R,H) , options)
function [c,ceq]=nonlcon(x,H,R)
c=[];
[i,j,k,l]=ndgrid(1:4);
ceq=(x(j).*x(k)) .* H(l) + (x(i).*x(l)) .* H(k) + (x(k).*x(j)) .* H(j) +...
(x(l).*x(i)) ,* H(i) - R(i) + R(j) + R(k) + R(l);
end
  댓글 수: 6
MarshallSc
MarshallSc 2022년 1월 2일
Can we write a code that would minimizes the solutions of overdetermined system of equations with 256 equations and 4 unknowns?
Matt J
Matt J 2022년 1월 2일
The set of solutions of an overdetermined system will typically be empty. If so, there are no solutions to minimize over.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Loops and Conditional Statements에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by