Gaussian quadrature for arbitrary weight functions

조회 수: 8 (최근 30일)
Stephan
Stephan 2021년 12월 14일
편집: Torsten 2024년 6월 3일
Dear all,
there are several Matlab codes available to compute an integral of the form
with Gaussian quadrature, where is a "standard" weight function, e.g. .
I'm looking for a Gaussian quadrature that works for arbitrary weight functions. For instance, a code of the form
[Quadrature_weights,Quadrature_nodes] = CODE(weight_function)
that returns Gaussian quadrature weights and nodes for a given, but arbitrary weight function.
Thanks, Stephan

답변 (1개)

Nipun
Nipun 2024년 6월 3일
Hi Stephan,
I understand that you intend to perform Gaussian quadrature for arbitrary weight functions in MATLAB. I recommend the following steps to achieve the desired results:
Define the weight function and desired number of nodes:
weight_function = @(x) exp(-x); % example weight function
n = 5; % number of nodes
Generate the quadrature nodes and weights:
You can use the Golub-Welsch algorithm to find the nodes and weights for any weight function. This method involves computing the eigenvalues and eigenvectors of a Jacobi matrix constructed from the moments of the weight function.
function [nodes, weights] = custom_gaussian_quadrature(weight_function, n)
% Define a suitable interval for integration, e.g., [a, b]
a = -1; % start of interval
b = 1; % end of interval
% Compute the moments of the weight function
moments = zeros(1, 2*n);
for k = 1:2*n
moments(k) = integral(@(x) (x.^(k-1)) .* weight_function(x), a, b);
end
% Construct the Jacobi matrix
J = zeros(n);
for i = 1:n
J(i,i) = moments(2*i-1) / moments(2*i-2); % diagonal elements
if i < n
J(i,i+1) = sqrt(moments(2*i) * moments(2*i-1)) / moments(2*i-2); % off-diagonal elements
J(i+1,i) = J(i,i+1); % symmetric matrix
end
end
% Compute the eigenvalues and eigenvectors of the Jacobi matrix
[V, D] = eig(J);
nodes = diag(D); % nodes are the eigenvalues
weights = moments(1) * V(1,:)'.^2; % weights are the square of the first element of eigenvectors
end
% Use the function to compute nodes and weights
[nodes, weights] = custom_gaussian_quadrature(weight_function, n);
Use the nodes and weights for integration:
integral_value = sum(weights .* f(nodes)); % where f is the function to be integrated
This approach gives you the Gaussian quadrature nodes and weights for any arbitrary weight function. Adjust the interval [a, b] as per the specific requirement.
Hope this helps.
Regards,
Nipun
  댓글 수: 1
Torsten
Torsten 2024년 6월 3일
편집: Torsten 2024년 6월 3일
For i = 1,
J(i,i) = moments(2*i-1) / moments(2*i-2); % diagonal elements
throws an error because it's attempted to access moments(0).
AI failed ?

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Linear Algebra에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by