MATLAB code for solving system of ODE with unknown parameters

조회 수: 14 (최근 30일)
Ana
Ana 2014년 10월 28일
댓글: Torsten 2014년 11월 5일
Hello, I was wondering if someone can help me write a code in MATLAB for solving system of nonlinear ODE with unknown parameters that need to fit the experimental data. I tried doing it by using < this > , but it didn't work. Or maybe I didn't do it properly because I didn't really understand what was what and how the variables were defined. My problem include this system:
  • dP/dt = (b - r0(N))P + ri(N)Q ;
  • dQ/dt = r0(N)P - (ri(N) + μ)Q ;
  • dD/dt = μQ - dD;
where
  • P,Q,D are function in t (time) ;
  • N = P + Q + D ;
  • r0(N) = kN/(aN + 1);
  • ri(N) = r/(N + m);
and a, b, d, k, m, μ and r are unknown parameters (that can be estimated within an interval, for every parameter; b, μ, d are positive). Initial conditions are:
  • P(0) = 0.1 (or 0.01);
  • Q(0) = D(0) = 0;
My problem includes finding approximative solution (or just in a form that can be graphed) and fitting parameters to experimental data that includes values for N(t) in some period of time (and then making a plot of P, Q, D, N functions and data on the same graph), for example:
t N(t)
4,6 0,0016308;
5,7 0,0032148;
6,7 0,0056140;
7,9 0,0118598;
8,8 0,0201500;
9,8 0,0275380;
11,0 0,0345460;
12,0 0,0660800;
12,9 0,0789320;
15,2 0,1550000;
Can someone explain me how to work this out in MATLAB? Please start from scratch, write me everything I need to do (like how to define P, Q, D and parameters, what goes in what function, how to use toolboxes and such). I am sorry if this is too much from me to ask, but I struggle with this for weeks now.
Thank you very much.

답변 (1개)

Alan Weiss
Alan Weiss 2014년 10월 28일
I am not going to give you a step-by-step tutorial on how to formulate ODE for solution in MATLAB. I will tell you that you have an optimization problem.
Set the vector
x = [a, b, d, k, m, μ, r]
I mean, a = x(1), b = x(2), etc. Then you can take a guess x(0) as initial parameters, and try to solve the optimization problem of minimizing the sum of squares of differences of your ODE solution from the data. The optimizer will adjust x to try to achieve the minimal difference.
For solving an ODE given an initial point, see Ordinary Differential Equations (a very long section, but one that has a bunch of examples).
Good luck,
Alan Weiss
MATLAB mathematical toolbox documentation
  댓글 수: 3
Torsten
Torsten 2014년 11월 5일
In the sequel, exp_t and exp_y are your measurement data.
a = 1.012;
b = 0.35;
d = 0.02085;
k = 1.25;
m = 3.42;
mi = 0.058;
r = 1.2025;
p0(1)=a;
p0(2)=b;
p0(3)=d;
p0(4)=k;
p0(5)=m;
p0(6)=mi;
p0(7)=r;
p_estimate = lsqnonlin(@(p)odefit(exp_t,exp_y,p),p0);
function err = odefit(exp_t,exp_y,p)
a=p(1);
b=p(2);
d=p(3);
k=p(4);
m=p(5);
mi=p(6);
r=p(7);
y0 = [1.0e-003;0;0];
[t,y] = ode45(@(t,y)f(t,y,a,b,d,k,m,mi,r),exp_t,y0)
err = y-exp_y; % compute error between experimental y and fitted y
end
function dydt = f(t,y,a,b,d,k,m,mi,r)
dydt = [ (b - k*(y(1) + y(2) + y(3))/(a*(y(1) + y(2) + y(3)) + 1))*y(1) + r*y(2)/(y(1) + y(2) + y(3) + m) k*(y(1) + y(2) + y(3))*y(1)/(a*(y(1) + y(2) + y(3)) + 1) - (r/(y(1) + y(2) + y(3) + m) + mi)*y(2) mi*y(2) - d*y(3)]; end
Torsten
Torsten 2014년 11월 5일
err = y-exp_y
has to be modified since in your model, there are three instead of one y(i)'s.
I leave it to you to make the necessary changes.
Best wishes
Torsten.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Ordinary Differential Equations에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by