Perform sensitivity, specificity, precision, recall, f_measure in CNN

조회 수: 23(최근 30일)
HK 2021년 11월 30일
답변: Pratyush Roy 2021년 12월 3일
Hello experts,
I want to perform [sensitivity, specificity, precision, recall, f_measure] in the following script, but I dont' know how.
Please help me how to write code to evaluate them!
outputFolder = fullfile('Caltech')
rootFolder = fullfile(outputFolder, '101_ObjectCategories')
categories = {'data1', 'data2'}
imds = imageDatastore(fullfile(rootFolder,categories), 'LabelSource','foldernames')
tbl = countEachLabel(imds)
minSetCount = min(tbl{:,2})
imds = splitEachLabel(imds, minSetCount, 'randomize')
net = resnet50();
lgraph = layerGraph(net);
clear net;
numClasses = 2;
[trainingSet, testSet] = splitEachLabel(imds, 0.7, 'randomize');
imageSize = [224 224 3];
augmentedTrainingSet = augmentedImageDatastore(imageSize,...
trainingSet, 'ColorPreprocessing', 'gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize,...
testSet, 'ColorPreprocessing', 'gray2rgb');
% New Learnable Layer
newLearnableLayer = fullyConnectedLayer(numClasses, ...
'Name','new_fc', ...
% Replacing the last layers with new layers
lgraph = replaceLayer(lgraph,'fc1000',newLearnableLayer);
newsoftmaxLayer = softmaxLayer('Name','new_softmax');
lgraph = replaceLayer(lgraph,'fc1000_softmax',newsoftmaxLayer);
newClassLayer = classificationLayer('Name','new_classoutput');
lgraph = replaceLayer(lgraph,'ClassificationLayer_fc1000',newClassLayer);
options = trainingOptions('adam',...
'Shuffle','every-epoch', ...
'ValidationData', augmentedTestSet, ...
'ValidationFrequency', 30, ...
'InitialLearnRate',1e-4, ...
'Verbose',false, ...
netTransfer = trainNetwork(augmentedTrainingSet,lgraph,options);

채택된 답변

Pratyush Roy
Pratyush Roy 2021년 12월 3일
The predict function might be helpful to predict the labels for the test images using the following command:
YPred = predict(netransfer, imds_test) %imds_test is the image dastore containing the test images.
After obtaining the predicted labels "YPred" the function perfcurve can be used the get the precision and recall values using the following command:
[Xpr,Ypr,Tpr,AUCpr] =perfcurve(targets, scores, 1, 'xCrit', 'reca', 'yCrit', 'prec');
Here Xpr and YPr represents recall and pres=cision respectively.
You can also use the confusion function to obtain the "Matrix of percentages" using the following command:
[c,cm,ind,per] = confusion(targets,outputs) %per represents the Matrix of percentages. Please refer to the doc for more details.
Hope this helps!

추가 답변(0개)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by