comparing results of Kmeans algorithm with Database to find out The precision of algorithm
조회 수: 2 (최근 30일)
이전 댓글 표시
Hi, I have 2000 articles(2000 .txt files) from 20 subjects(20 Folders). it's my Database.
I clustered them by Kmeans Algorithm.("idx" parametr in Kmeans , shows me Each article belongs to which cluster)
Now , How can i compare Kmeans Result With Database to find out The precision of algorithm?
it's hard to use "Eye" for 2000 files!
댓글 수: 0
답변 (1개)
Image Analyst
2014년 10월 23일
This is typically done with a "confusion matrix" which is a table of N classes by N classes that shows you what class a sample got classified as, versus what it's "True" class is. Ideal classification would yield a confusion matrix with numbers only along the diagonal. The more off-diagonal it becomes, the less accurate your classification algorithm is.
You can also use ROC curves http://en.wikipedia.org/wiki/Receiver_operating_characteristic which is a plot of true positives vs. false negatives. ROC curves are especially used in clinical studies.
댓글 수: 2
참고 항목
카테고리
Help Center 및 File Exchange에서 Statistics and Machine Learning Toolbox에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!