Calculate the Median of the results from 100 Simulations

조회 수: 2 (최근 30일)
CMatlabWold
CMatlabWold 2021년 10월 13일
댓글: CMatlabWold 2021년 10월 14일
Hi. I have a code where I am running a Random Forest regression. I am running it 100 times. However, I am having difficulty calculating the median of the 100 trials.
The result I am looking for is located in the variable designated "impOOB".
For each run, there should be values in impOOB variable for 5 columns. For instance:
0.427417559041683 0.00894308188405568 0.141297948087486 0.222153283589539 0.200188127397237
For 100 runs of column 1, I need the median. The same for column 2, and so forth.
My code is as follows:
n = 100;
result = zeros(n,5);
for k=1:n
X = readtable('TOPOonly.xlsx','PreserveVariableNames',true)
Y = readtable('TotalComplaintsRF.xlsx','PreserveVariableNames',true)
t = templateTree('NumVariablesToSample','all',...
'PredictorSelection','interaction-curvature','Surrogate','on');
Mdl = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',200, ...
'Learners',t);
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
impOOB = oobPermutedPredictorImportance(Mdl);
impOOB(impOOB<0) = 0;
impOOB = impOOB./sum(impOOB)
result(k) =
end
I'll attach the files as well. I appreciate very much any help with this.

채택된 답변

Matt J
Matt J 2021년 10월 14일
편집: Matt J 2021년 10월 14일
impOOB=rand(100,5)
impOOB = 100×5
0.7604 0.5152 0.7196 0.2418 0.5420 0.8386 0.3787 0.4701 0.4692 0.7572 0.9929 0.0561 0.2087 0.1176 0.9434 0.7796 0.2491 0.1337 0.1499 0.9048 0.3695 0.1500 0.6826 0.4575 0.4751 0.6069 0.1207 0.8111 0.5832 0.3273 0.9885 0.2647 0.1840 0.9606 0.0610 0.1243 0.3249 0.5171 0.1649 0.9400 0.7085 0.7869 0.5282 0.5472 0.4634 0.7656 0.4034 0.7932 0.8618 0.5136
median(impOOB,1)
ans = 1×5
0.4813 0.4997 0.4696 0.4513 0.5518
  댓글 수: 3
Matt J
Matt J 2021년 10월 14일
n = 100;
result = zeros(n,5);
for k=1:n
X = readtable('TOPOonly.xlsx','PreserveVariableNames',true)
Y = readtable('TotalComplaintsRF.xlsx','PreserveVariableNames',true)
t = templateTree('NumVariablesToSample','all',...
'PredictorSelection','interaction-curvature','Surrogate','on');
Mdl = fitrensemble(X,Y,'Method','Bag','NumLearningCycles',200, ...
'Learners',t);
yHat = oobPredict(Mdl);
R2 = corr(Mdl.Y,yHat)^2
impOOB = oobPermutedPredictorImportance(Mdl);
impOOB(impOOB<0) = 0;
result(k,:) = impOOB./sum(impOOB);
end
median(result,1)
CMatlabWold
CMatlabWold 2021년 10월 14일
It works. Thank you very much

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Just for fun에 대해 자세히 알아보기

제품


릴리스

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by