How do I generate a pdf from some known percentile values
조회 수: 29 (최근 30일)
이전 댓글 표시
Hi Matlab community,
I have percentile values that describe a distribution of possible sea level rise magnitudes. I would like to be able to generate a probability density function that closely approximates the actual distribution from which the percentile values were generated. Can anyone suggest how to achieve this please?
Example data:
prctiles = [5 10 30 33 50 67 70 90 95];
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
댓글 수: 0
채택된 답변
Star Strider
2021년 10월 12일
A slightly different approach —
prctiles = [5 10 30 33 50 67 70 90 95];
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
B = fminsearch(@(b) norm(prctiles/100 - cdf('Normal',SLR,b(1),b(2))), [SLR(prctiles==50);rand])
SLRv = linspace(min(SLR), max(SLR));
yfit = cdf('Normal', SLRv, B(1), B(2));
figure
plot(SLR, prctiles/100, 'p')
hold on
plot(SLRv, yfit, '-r')
hold off
grid
title(sprintf('$p = N(%.2f, %.3f)$',B), 'Interpreter','latex')
legend('SLR','Fitted Noprmal Distribution', 'Location','NW')
Experiment to get different results.
.
댓글 수: 6
추가 답변 (2개)
Image Analyst
2021년 10월 12일
Have you seen fitdist() in the Stats toolbox?
Of course you'd be better off with much more data.
댓글 수: 1
Image Analyst
2021년 10월 12일
편집: Image Analyst
2021년 10월 12일
Here's an example:
clc; % Clear the command window.
fprintf('Beginning to run %s.m ...\n', mfilename);
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 17;
SLR = [3.2760 3.5265 4.1286 4.2013 4.5566 4.9151 4.9836 5.6045 5.9105];
% Plot data.
subplot(2, 1, 1);
bar(SLR)
grid on;
title('Original SLR Data', 'FontSize', fontSize);
xlabel('Index', 'FontSize', fontSize);
ylabel('SLR Value', 'FontSize', fontSize);
% Get distribution.
d = fitdist(SLR(:), 'Normal')
% Make curve, plot distribution.
% https://en.wikipedia.org/wiki/Normal_distribution
x = linspace(min(SLR), max(SLR), 1000);
amp = 1 / (d.sigma * sqrt(2*pi));
y = amp * exp(-(1/2) * ((x - d.mu) / d.sigma) .^ 2)
subplot(2, 1, 2);
plot(x, y, 'b-', 'LineWidth', 2);
grid on;
title('Estimated Distribution of SLR', 'FontSize', fontSize);
xlabel('SLR', 'FontSize', fontSize);
ylabel('PDF', 'FontSize', fontSize);
Pick the distribution that fits the theory of what the distribution should actually be. Hopefully you know this in advance. Actually you need to if you're going to model it. Otherwise just normalize your histogram and that is the actual PDF.
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!