Random Variable with exponential distribution of Probablity Density Function

조회 수: 9 (최근 30일)
Hydro
Hydro 2014년 9월 16일
편집: ABHILASH SINGH 2018년 8월 17일
Any thought/hint for solving this question
Assume that the random variable X has an Exponential distribution with PDF given by:
* f(x) = 1/α exp(-x/α); x => 0*
Using the theory of transformed random variables, determine an expression for the PDF of Y , where Y = X^2.
Plot the PDFs of X and Y in the same plot. The answer to the question should be the analytical derivation of the PDF of Y , as well as the plots of the PDFs of X and Y .

답변 (3개)

ABHILASH SINGH
ABHILASH SINGH 2018년 8월 14일
편집: ABHILASH SINGH 2018년 8월 17일
alpha=2;
X=0:0.1:10;
fx=(1/alpha)*exp(-X./alpha);
plot(X,fx)
fy=fx./(2*X);
hold on
plot(X,fy)
legend('f(X)','f(Y)')
xlabel('X')
ylabel('F(X),F(Y)')

Roger Stafford
Roger Stafford 2014년 9월 17일
If we call the pdf of y, 'pdfy', then
pdfy(t) = 1/(2*a*sqrt(t))*exp(-1/a*sqrt(t))
Note the interesting fact that as t approaches the lower limit of zero, the probability density approaches infinity, but that's all right because, of necessity, it is still integrable, and in fact has an integral of one as the upper limit for t approaches infinity. You can see that trend to infinity at t = 0 in Youssef's plot.

Youssef  Khmou
Youssef Khmou 2014년 9월 16일
편집: Youssef Khmou 2014년 9월 16일
The beginning of the answer can be as the following :
% first part
alpha=2; % parameter
N=400; % size of a sample
r=random('exp',alpha,1,N);
figure; plot(r);
x=linspace(min(r),max(r),40);
figure;hist(r,x);
title(' Exponential distribution') ; % hold on..........

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by