Best Validation check number for MATLAB neural network
조회 수: 2 (최근 30일)
이전 댓글 표시
I'm using 10-fold cross validation and patternent function for a binary classification problem in MATLAB. When I see neural network result window, in all trainings of neural network ( 80% training , 10% validation and 10% test with sample size 200~600 ) Early stopping is stopping my training process in iteration between 20~40. As you know the default value is maximum 6. What should i do about this problem? Should i increase maximum number of early stopping iteration checks?
Thanks.
댓글 수: 0
채택된 답변
Greg Heath
2014년 9월 5일
편집: Greg Heath
2014년 9월 5일
That is not necessarily a problem.
What error rates are you getting as you vary the number, H, of hidden nodes and sets of random initial weights?
I typically look at Ntrials = 10 different initial weight initializations for each candidate value of Hmin:dH:Hmax (numH~10).
Search in NEWSGROUP and ANSWERS
greg patternet Ntrials
Hope this helps.
Thank you for formally accepting my answer
Greg
추가 답변 (0개)
참고 항목
카테고리
Help Center 및 File Exchange에서 Sequence and Numeric Feature Data Workflows에 대해 자세히 알아보기
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!