Unable to grasp the concept of Sparse Matrix - Kindly help me understand the following code.

조회 수: 1 (최근 30일)
% Sparse Matrix Indexes: S(i,j)=0 if dF(i)/dy(j)=0, else S(i,j)=1
diagonal = diag(ones(bins,1));
dcidci = diag(ones(bins,1),0)+diag(ones(bins-1,1),-1)+diag(ones(bins-1,1),+1);
dcidcj = diag(ones(bins,1))+diag(ones(bins-1,1),-1)+diag(ones(bins-2,1),-2);
dcdc = [dcidci dcidci dcidci; dcidci dcidci dcidci; dcidci dcidci dcidci];
dcdq = diag(ones(nspecies*bins,1));
dcdT = repmat(dcidci,[nspecies,1]);
dqdq = diag(ones(nspecies*bins,1));
dqdc = repmat(diagonal,nspecies);
dqdT = repmat(diagonal,[nspecies,1])
dTdc = repmat(dcidci,[1,nspecies]);
dTdq = repmat(diagonal,[1,nspecies]);
dTdT = dcidci;
S = [dcdc dcdq dcdT; dqdc dqdq dqdT; dTdc dTdq dTdT];

답변 (1개)

Arun
Arun 2024년 2월 23일
Hi Hamza,
I understand that you want to some explanation about “sparse” matrix and the implementation of “sparse” matrix in the shared code using MATLAB.
A matrix is a two-dimensional data object, that represent data in the form of rows and columns. A “sparse” matrix is one where most of its elements are zero. Sparse matrix can be stored using less memory and require less computation time. MATLAB provides “sparse” function to convert a full matrix into sparse form by squeezing out any zero element.
The shared code utilizes mainly two functions, “diag” and “repmat”. The “diag” function, creates a diagonal matrix. The “repmat” function helps to create a matrix by repeating a given matrix in a specified number of times in both the row and column directions.
Since the code shared is missing some values, let us assume “bins” = 4 and “nspecies” = 3. I have removed commas to display the output in order to provide a better understanding of the code:
bins = 4;
nspecies = 3;
diagonal = diag(ones(bins,1))
diagonal = 4×4
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
dcidci = diag(ones(bins,1),0)+diag(ones(bins-1,1),-1)+diag(ones(bins-1,1),+1)
dcidci = 4×4
1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1
dcidcj = diag(ones(bins,1))+diag(ones(bins-1,1),-1)+diag(ones(bins-2,1),-2);
dcdc = [dcidci dcidci dcidci; dcidci dcidci dcidci; dcidci dcidci dcidci];
dcdq = diag(ones(nspecies*bins,1));
dcdT = repmat(dcidci,[nspecies,1])
dcdT = 12×4
1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0
dqdq = diag(ones(nspecies*bins,1));
dqdc = repmat(diagonal,nspecies);
dqdT = repmat(diagonal,[nspecies,1]);
dTdc = repmat(dcidci,[1,nspecies]);
dTdq = repmat(diagonal,[1,nspecies]);
dTdT = dcidci;
S = [dcdc dcdq dcdT; dqdc dqdq dqdT; dTdc dTdq dTdT]
S = 28×28
1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0
% Find the number of ones
numOnes = sum(S(:) == 1)
numOnes = 244
% Find the number of zeros
numZeros = sum(S(:) == 0)
numZeros = 540
As we can see that more that 68% of entries are zero element, “S” is an example of “sparse” matrix.
For more information, please refer to the shared documentation links:
  1. “sparse” function: https://www.mathworks.com/help/matlab/ref/sparse.html
  2. “diag” function: https://www.mathworks.com/help/matlab/ref/diag.html
  3. “repmat” function: https://in.mathworks.com/help/matlab/ref/repmat.html
I hope this helps.
HTH

카테고리

Help CenterFile Exchange에서 Data Distribution Plots에 대해 자세히 알아보기

제품


릴리스

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by