
Steepest descent with exact line search method
조회 수: 18 (최근 30일)
이전 댓글 표시
Noob here . I have been trying to implement steepest descent algorithm on matlab and I first solved it using constant step size. But now I have been trying to implement exact line search method to find the step size which I can't seem to solve . Here's the code I'm working with:
syms x1 x2
syms alpha %stepsize
n=input("Enter the roll number:");
f1=(x1-n)^2 + (x2-2*n)^2;
fx=inline(f1);
fobj=@(x)fx(x(:,1),x(:,2));
%Gradient
grad=gradient(f1);
G=inline(grad);
gradx=@(x) G(x(:,1),x(:,2));
%Initial Parameters
x0=[1 1];
k=0;
X=[];
while norm(gradx(x0))>0.001
X=[X;x0];
gradnew=-gradx(x0);
a=func(x0,alpha,gradnew,n);
X_new=x0 + a*gradnew.';
x0=X_new;
k=k+1;
end
fprintf("Optimal solution x=%f,%f\n",x0);
fprintf("Optimal value f(x)= %d \n",fobj(x0));
function y = func(x,b,d,n)
f=@(a)(x+b.*d' -n).^2 + (x+b.*d'-2.*n).^2;
res=fminunc(inline(f),[1,1])
y=res.b
댓글 수: 1
답변 (1개)
Matt J
2021년 9월 15일
편집: Matt J
2021년 9월 15일
n=input("Enter the roll number:");
fobj=@(x) (x(1)-n)^2 + (x(2)-2*n)^2;
gradobj=@(x)2*[(x(1)-n), (x(2)-2*n)];
x0=[1 1];
k=0;
X=[];
while norm(gradobj(x0))>0.001
X=[X;x0];
linedir=-gradobj(x0);
fline=@(a) fobj(x0+a*linedir);
a=fminsearch(fline,0);
x0=x0 + a*linedir;
k=k+1
end
fprintf("Optimal solution x=%f,%f\n",x0);
fprintf("Optimal value f(x)= %d \n",fobj(x0));
댓글 수: 3
Matt J
2022년 2월 16일
편집: Matt J
2022년 2월 16일
There are no equations in the problem addressed here. This is a cost function minimization problem.
If you have a cost function (and its gradient) that measures agreeement with your equations, it should work just the same.
However, it would be advisable to use fsolve() if you can, rather than implement your own solver.
Nasser Issa
2024년 2월 17일
Bonjour comment allez-vous je suis nouveau mais je cherche une implémentation sur MATLAB ou en python pour optimisation méthode steepest Descent associé à la méthode dichotomie
J'attends votre réponse sur mon adresse mail nasserissahamidou@gmail.com
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!