Problem in automatic gradient calculation using Deep Learning Toolbox
조회 수: 4 (최근 30일)
이전 댓글 표시
Hello,
Could anyone please tell me why the dlgradient function is throwing the error? It seems to me that somehow the loss is not getting traced to the input weights? Could anyone suggest why it is happening?
x0 = dlarray([1,2,3],'BC');
y0 = dlarray(14,'BC');
fcnn_graph = layerGraph;
layers = [featureInputLayer(3,"Normalization","none","Name","InputLayer")
fullyConnectedLayer(5,"WeightsInitializer","glorot","BiasInitializer","ones","Name","fc1")
tanhLayer("Name","active_1")
fullyConnectedLayer(5,"WeightsInitializer","glorot","BiasInitializer","ones","Name","fc2")
tanhLayer("Name","active_2")
fullyConnectedLayer(1,"WeightsInitializer","glorot","BiasInitializer","ones","Name","fc3")
];
fcnn_graph = addLayers(fcnn_graph,layers);
dlnet = dlnetwork(fcnn_graph);
[gradients,state,loss] = modelGradients(dlnet,x0,y0);
function [gradients,state,loss] = modelGradients(dlnet,X,Y)
[YPred,state] = forward(dlnet,X);
loss = crossentropy(YPred,Y);
gradients = dlgradient(loss,dlnet.Learnables);
loss = double(gather(extractdata(loss)));
end
댓글 수: 0
채택된 답변
Philip Brown
2021년 9월 9일
To ensure tracing is happening, you need to pass your modelGradients function to dlfeval - see this doc page for more details. Replace your line:
[gradients,state,loss] = modelGradients(dlnet,x0,y0);
with
[gradients,state,loss] = dlfeval(@modelGradients, dlnet,x0,y0);
This will ensure that your modelGradients function has tracing between the input weights and the loss.
댓글 수: 4
Philip Brown
2021년 9월 9일
You can use the Learnables property of the dlnetwork; this stores them as a table. For example, for the 'fc1' layer weights, you can use:
dlnet.Learnables{1,3}{1}
추가 답변 (0개)
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!