Can I get a sample Matlab code for an optimization problem using Firefly Algorithm?

조회 수: 3 (최근 30일)
I would like to know how Matlab codes are written for any given optimization problem using a Firefly Algorithm, preferably related to Power System engineering topics.
  댓글 수: 1
satheesh aathavan
satheesh aathavan 2017년 4월 13일
function fa_mincon % parameters [n N_iteration alpha betamin gamma] para=[40 500 0.5 0.2 1]; format long;
help fa_mincon.m % This demo uses the Firefly Algorithm
% Simple bounds/limits disp('Solve the simple spring design problem ...'); Lb=[0.05 0.25 2.0]; Ub=[2.0 1.3 15.0];
% Initial random guess u0=Lb+(Ub-Lb).*rand(size(Lb));
[u,fval,NumEval]=ffa_mincon(@cost,@constraint,u0,Lb,Ub,para);
% Display results bestsolution=u bestojb=fval total_number_of_function_evaluations=NumEval
%%% Put your own cost/objective function here --------%%% %% Cost or Objective function function z=cost(x) z=(2+x(3))*x(1)^2*x(2);
% Constrained optimization using penalty methods % by changing f to F=f+ \sum lam_j*g^2_j*H_j(g_j) % where H(g)=0 if g<=0 (true), =1 if g is false
%%% Put your own constraints here --------------------%%% function [g,geq]=constraint(x) % All nonlinear inequality constraints should be here % If no inequality constraint at all, simple use g=[]; g(1)=1-x(2)^3*x(3)/(71785*x(1)^4); % There was a typo in Cagnina et al.'s paper, % the factor should 71785 insteady of 7178 ! tmpf=(4*x(2)^2-x(1)*x(2))/(12566*(x(2)*x(1)^3-x(1)^4)); g(2)=tmpf+1/(5108*x(1)^2)-1; g(3)=1-140.45*x(1)/(x(2)^2*x(3)); g(4)=x(1)+x(2)-1.5;
% all nonlinear equality constraints should be here % If no equality constraint at all, put geq=[] as follows geq=[];
%%% End of the part to be modified -------------------%%%
%%% --------------------------------------------------%%% %%% Do not modify the following codes unless you want %%% %%% to improve its performance etc %%% % ------------------------------------------------------- % ===Start of the Firefly Algorithm Implementation ====== % Inputs: fhandle => @cost (your own cost function, % can be an external file ) % nonhandle => @constraint, all nonlinear constraints % can be an external file or a function % Lb = lower bounds/limits % Ub = upper bounds/limits % para == optional (to control the Firefly algorithm) % Outputs: nbest = the best solution found so far % fbest = the best objective value % NumEval = number of evaluations: n*MaxGeneration % Optional: % The alpha can be reduced (as to reduce the randomness) % ---------------------------------------------------------
% Start FA function [nbest,fbest,NumEval]... =ffa_mincon(fhandle,nonhandle,u0, Lb, Ub, para) % Check input parameters (otherwise set as default values) if nargin<6, para=[20 50 0.25 0.20 1]; end if nargin<5, Ub=[]; end if nargin<4, Lb=[]; end if nargin<3, disp('Usuage: FA_mincon(@cost, @constraint,u0,Lb,Ub,para)'); end
% n=number of fireflies % MaxGeneration=number of pseudo time steps % ------------------------------------------------ % alpha=0.25; % Randomness 0--1 (highly random) % betamn=0.20; % minimum value of beta % gamma=1; % Absorption coefficient % ------------------------------------------------ n=para(1); MaxGeneration=para(2); alpha=para(3); betamin=para(4); gamma=para(5);
% Total number of function evaluations NumEval=n*MaxGeneration;
% Check if the upper bound & lower bound are the same size if length(Lb) ~=length(Ub), disp('Simple bounds/limits are improper!'); return end
% Calcualte dimension d=length(u0);
% Initial values of an array zn=ones(n,1)*10^100; % ------------------------------------------------ % generating the initial locations of n fireflies [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0);
% Iterations or pseudo time marching for k=1:MaxGeneration, %%%%% start iterations
% This line of reducing alpha is optional alpha=alpha_new(alpha,MaxGeneration);
% Evaluate new solutions (for all n fireflies) for i=1:n, zn(i)=Fun(fhandle,nonhandle,ns(i,:)); Lightn(i)=zn(i); end
% Ranking fireflies by their light intensity/objectives [Lightn,Index]=sort(zn); ns_tmp=ns; for i=1:n, ns(i,:)=ns_tmp(Index(i),:); end
%% Find the current best nso=ns; Lighto=Lightn; nbest=ns(1,:); Lightbest=Lightn(1);
% For output only fbest=Lightbest;
% Move all fireflies to the better locations [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,nbest,... Lightbest,alpha,betamin,gamma,Lb,Ub);
end %%%%% end of iterations
% ------------------------------------------------------- % ----- All the subfunctions are listed here ------------ % The initial locations of n fireflies function [ns,Lightn]=init_ffa(n,d,Lb,Ub,u0) % if there are bounds/limits, if length(Lb)>0, for i=1:n, ns(i,:)=Lb+(Ub-Lb).*rand(1,d); end else % generate solutions around the random guess for i=1:n, ns(i,:)=u0+randn(1,d); end end
% initial value before function evaluations Lightn=ones(n,1)*10^100;
% Move all fireflies toward brighter ones function [ns]=ffa_move(n,d,ns,Lightn,nso,Lighto,... nbest,Lightbest,alpha,betamin,gamma,Lb,Ub) % Scaling of the system scale=abs(Ub-Lb);
% Updating fireflies for i=1:n, % The attractiveness parameter beta=exp(-gamma*r) for j=1:n, r=sqrt(sum((ns(i,:)-ns(j,:)).^2)); % Update moves if Lightn(i)>Lighto(j), % Brighter and more attractive beta0=1; beta=(beta0-betamin)*exp(-gamma*r.^2)+betamin; tmpf=alpha.*(rand(1,d)-0.5).*scale; ns(i,:)=ns(i,:).*(1-beta)+nso(j,:).*beta+tmpf; end end % end for j
end % end for i
% Check if the updated solutions/locations are within limits [ns]=findlimits(n,ns,Lb,Ub);
% This function is optional, as it is not in the original FA % The idea to reduce randomness is to increase the convergence, % however, if you reduce randomness too quickly, then premature % convergence can occur. So use with care. function alpha=alpha_new(alpha,NGen) % alpha_n=alpha_0(1-delta)^NGen=10^(-4); % alpha_0=0.9 delta=1-(10^(-4)/0.9)^(1/NGen); alpha=(1-delta)*alpha;
% Make sure the fireflies are within the bounds/limits function [ns]=findlimits(n,ns,Lb,Ub) for i=1:n, % Apply the lower bound ns_tmp=ns(i,:); I=ns_tmp<Lb; ns_tmp(I)=Lb(I);
% Apply the upper bounds
J=ns_tmp>Ub;
ns_tmp(J)=Ub(J);
% Update this new move
ns(i,:)=ns_tmp;
end
% ----------------------------------------- % d-dimensional objective function function z=Fun(fhandle,nonhandle,u) % Objective z=fhandle(u);
% Apply nonlinear constraints by the penalty method % Z=f+sum_k=1^N lam_k g_k^2 *H(g_k) where lam_k >> 1 z=z+getnonlinear(nonhandle,u);
function Z=getnonlinear(nonhandle,u) Z=0; % Penalty constant >> 1 lam=10^15; lameq=10^15; % Get nonlinear constraints [g,geq]=nonhandle(u);
% Apply inequality constraints as a penalty function for k=1:length(g), Z=Z+ lam*g(k)^2*getH(g(k)); end % Apply equality constraints (when geq=[], length->0) for k=1:length(geq), Z=Z+lameq*geq(k)^2*geteqH(geq(k)); end
% Test if inequalities hold % H(g) which is something like an index function function H=getH(g) if g<=0, H=0; else H=1; end
% Test if equalities hold function H=geteqH(g) if g==0, H=0; else H=1; end

댓글을 달려면 로그인하십시오.

답변 (2개)

Michael Haderlein
Michael Haderlein 2014년 7월 23일

sohail afridi
sohail afridi 2021년 8월 31일
rand

카테고리

Help CenterFile Exchange에서 Solver-Based Nonlinear Optimization에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by