eig versus svd functions?

조회 수: 24 (최근 30일)
Traian Preda
Traian Preda 2014년 7월 18일
편집: Alfonso Nieto-Castanon 2014년 7월 18일
Hi,
I would like to ask what is the difference between the function eig and svd and what is the difference between the right eigenvectors and the right singular eigenvectors of these functions?
Thank you

채택된 답변

Alfonso Nieto-Castanon
Alfonso Nieto-Castanon 2014년 7월 18일
편집: Alfonso Nieto-Castanon 2014년 7월 18일
SVD is a decomposition for arbitrary-size matrices, while EIG applies only to square matrices. They are very much related:
The right singular vectors of A are the eigenvectors of A'*A, and the left singular vectors of A are the eigenvectors of A*A'.
Similarly the singular values of A are the square root of the eigenvalues of A*A' (or A'*A, the eigenvalues of those are just the same)
  댓글 수: 2
Traian Preda
Traian Preda 2014년 7월 18일
Hi,
Thank you very much for the answer. So by using eig to a non-square matrix the eigenvectors I get it are wrong? Should I use the svd function to get the correct eigenvectors?
Alfonso Nieto-Castanon
Alfonso Nieto-Castanon 2014년 7월 18일
not exactly, there are simply no "eigenvectors" of a non-square matrix (eigenvalues/eigenvectors are only defined for square matrices)

댓글을 달려면 로그인하십시오.

추가 답변 (2개)

Traian Preda
Traian Preda 2014년 7월 18일
Hi again,
For example for this A matrix (square) I get using eig different right eigenvectors than by using svd. Seems that the sign of the ones produces by svd are the correct ones. Why this is happen?
-0,309435400000000 0,0211961600000000 0,0136410800000000 0,00743749000000000 0,00982272000000000 0,0111470200000000 0,00231817000000000 0,00864246000000000 0,00882075000000000 0,00284796000000000 0,00218905000000000 0,000430500000000000 0,000376470000000000 -0,113049800000000 0,00313088000000000 0,00149085000000000 0,00262337000000000 0,00311209000000000 -0,000262570000000000 0,00274903000000000 0,00264655000000000 0,000447630000000000 -0,000306180000000000 -0,00343315000000000 0,0103301100000000 0,0146587200000000 -0,324318800000000 0,00848285000000000 0,0167109100000000 0,0201004200000000 -0,00347676000000000 0,00632566000000000 0,00637912000000000 0,00186275000000000 0,00111713000000000 -0,00141243000000000 0,0464070100000000 0,0700929900000000 0,0900204400000000 -1,25637600000000 0,0836402500000000 0,103855100000000 -0,0114356300000000 0,0277253900000000 0,0280522900000000 0,00843094000000000 0,00547936000000000 -0,00411460000000000 0,0343002800000000 0,0606666900000000 0,0772628000000000 0,0388068100000000 -0,983633200000000 0,101284700000000 0,000288840000000000 0,0190463800000000 0,0194692000000000 0,00636249000000000 0,00501263000000000 0,00161963000000000 0,0216479800000000 0,0390856900000000 0,0497280000000000 0,0259531400000000 0,0538816600000000 -0,620819600000000 0,000968680000000000 0,0118906800000000 0,0121738400000000 0,00402735000000000 0,00325024000000000 0,00144150000000000 0,0560331100000000 0,0322143500000000 0,0452270700000000 0,00474108000000000 0,0665512800000000 0,0879651100000000 -1,14406400000000 0,0420314600000000 0,0413540800000000 0,00940455000000000 0,000919950000000000 -0,0325435900000000 0,0651720900000000 0,148360900000000 0,0550088600000000 0,0311400300000000 0,0376528500000000 0,0420123000000000 0,0135666400000000 -1,51919300000000 0,0778850700000000 -0,0322261000000000 0,0138896200000000 0,0193712200000000 0,0669056200000000 0,140490500000000 0,0573799400000000 0,0320810700000000 0,0399603600000000 0,0448506100000000 0,0126767400000000 0,0401568300000000 -1,54203000000000 -0,119447500000000 -0,000335680000000000 0,00939138000000000 0,0818470500000000 0,154808700000000 0,0715045300000000 0,0394081700000000 0,0507693800000000 0,0573505200000000 0,0137023800000000 -0,0385798100000000 -0,184705900000000 -1,07855600000000 -0,0214767400000000 -0,00365997000000000 0,0835618100000000 0,118544600000000 0,0760379600000000 0,0406107300000000 0,0561993500000000 0,0643053400000000 0,00980772000000000 0,0875483300000000 0,0746029100000000 -0,0136161900000000 -1,29450700000000 -0,0388254600000000 0,00108525000000000 0,000792020000000000 0,00104497000000000 0,000534560000000000 0,000812510000000000 0,000944030000000000 4,82500000000000e-05 0,000902380000000000 0,000866900000000000 0,000141640000000000 -0,000112090000000000 -0,174199600000000
  댓글 수: 1
Alfonso Nieto-Castanon
Alfonso Nieto-Castanon 2014년 7월 18일
the eigenvectors of a square matrix are not generally the same as any of the singular vectors of that same matrix (they are equal/equivalent only when the matrix is symmetric)

댓글을 달려면 로그인하십시오.


Traian Preda
Traian Preda 2014년 7월 18일
OK, then this can be reason that when I try to rebuilt the A matrix, I cannot succeed by using the V, D eigenvectors ([V,D]=eig(A)), but I can rebuilt it when I use V,S,D ([V,S,D]=svd(A))?
Thank you very much
  댓글 수: 1
Alfonso Nieto-Castanon
Alfonso Nieto-Castanon 2014년 7월 18일
편집: Alfonso Nieto-Castanon 2014년 7월 18일
You can reconstruct A from its eigenvectors only if A is normal (A'*A==A*A'). You can reconstruct A from its singular vectors for any matrix A.

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Linear Algebra에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by