parameter estimation and minimization

조회 수: 6 (최근 30일)
Devyani
Devyani 2014년 6월 26일
댓글: Star Strider 2014년 7월 8일
I have to estimate parameters(k1 ,k2) of the following equation
dx/dt=k1(3-x)-k2*ca0*x^2
I have data available of x vs t at different inital ca0.I have minimization function as follows.
where N=total no. of runs at different ca0(=6) and N'= total no. of runs at same ca0(=12). kindly help me to build a matlab code for the same bcoz i have done only with one summation error minimization.
  댓글 수: 4
Devyani
Devyani 2014년 6월 28일
i am sorry actually i was just trying with four random data points.. i posted tht code only,change the loop to 4 thn.and the function paraesti looks like this
function dxdt=paraesti(x,t,theta)
global theta;
k1=theta(1);
k2=theta(2);
dxdt=k1*(3-x)-k2*ca0*x^2;
Devyani
Devyani 2014년 6월 28일
and i have actually 6 different values of ca0 and each ca0 has 12 data points.thts y the loop 6 and 12

댓글을 달려면 로그인하십시오.

채택된 답변

Star Strider
Star Strider 2014년 6월 28일
Your ODE is not well-behaved. I had problems fitting it with synthesised data with even a small noise component, particularly with respect to k1 (or p(1) in my code). It is very sensitive to the initial parameter estimates. I have no idea what your parameters actually are, so you will have to experiment with the starting estimates to get a good fit to your data. I also used ‘0’ as an initial condition for x in the data synthesis and the DevyaniODEFIT function. Change this if it is not correct. I used a time vector of [0:12] for the independent variable. Change this to reflect the values of your actual independent variable.
I attached the objective function that integrates your ODE and is used by the main script as an objective function that the parameter estimation routine uses to fit your data. I used fminsearch here because I do not know if you have access to the Statistics Toolbox function nlinfit or the Optimization Toolbox function lsqcurvefit. They are more robust and will give a better fit than fminsearch, so you can easily change my code here to use them instead. Note that your paraesti function does not pass Ca0 as a parameter, so either include it in yours, or use my function instead.
The main code:
Ca0=[6 9 12 18];
DE = @(p,t,x,Ca0) p(1).*(3-x)-p(2).*Ca0.*x.^2; % ODE function to create data
% CREATE DATA:
for k1 = 1:length(Ca0)
p(:,k1) = rand(2, 1)*0.1; % Random parameters k1, k2
[t x(:,k1)] = ode45(@(t,x) DE(p(:,k1),t,x,Ca0(k1)), [0:12], 0);
x(:,k1) = x(:,k1) + 0.005*randn(size(x(:,k1))); % Add noise for realism
end
% ESTIMATE PARAMETERS:
for k1 = 1:length(Ca0)
xest = @(B) DevyaniODEFIT(B,t,Ca0(k1)); % Calls ODE function
OLS = @(B) sum( (x(:,1) - xest(B) ).^2); % Least squares objective function
B0 = rand(2,1)*0.1; % Initial parameter estimates
B(:,k1) = fminsearch(OLS, B0); % Optimise parameters to fit data
xgrf(:,k1) = DevyaniODEFIT(B,t,Ca0(k1)); % Generated fitted data to plot
end
figure(1)
plot(t, x, '-x', 'MarkerSize',2, 'LineWidth',1) % Plot original data
hold on % Plot estimated data
plot(t, xgrf, '-p', 'LineWidth',1.5, 'MarkerSize',3);
hold off
grid
The function DevyaniODEFIT.m is attached.
The code definitely works. I documented it with comments as well as I can, so you can easily understand it. You will probably have to experiment with different starting values it to fit your data.
  댓글 수: 15
Devyani
Devyani 2014년 7월 8일
thanks star!! i got to know the prblem and have estimated the parameters with my data :) again thanku !
Star Strider
Star Strider 2014년 7월 8일
My pleasure!
I’m glad it worked.

댓글을 달려면 로그인하십시오.

추가 답변 (0개)

카테고리

Help CenterFile Exchange에서 Nonlinear Regression에 대해 자세히 알아보기

태그

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by