Using Principle Component Analysis (PCA) in classification
조회 수: 7 (최근 30일)
이전 댓글 표시
Hi All, I am working in a project that classify certain texture images. I will be using Gaussian Mixture model to classify all the database into textured and non-textured images.
Now, I am using PCA to reduce the dimension of my data that is 512 dimensions, so I can train the GMM model. The results from PCA are new variables and those variables will be used in the training process:
[wcoeff,score,latent,~,explained] = pca(AllData);
The question is: in the testing process how can I use the wcoeff to get the same variables? Do I just multiply the wcoeff with the new image?
댓글 수: 2
Delsavonita Delsavonita
2018년 5월 8일
편집: Adam
2018년 5월 8일
i have the same problem too, since you post the question on 2014, you must be done doing your project, so can you kindly send me the solution for this problem ? i really need this...
답변 (1개)
KaMu
2014년 6월 26일
편집: KaMu
2014년 6월 26일
댓글 수: 2
Image Analyst
2018년 5월 8일
Because we don't understand your question. See my attached PCA demo. It will show you how to get the PC components.
jin li
2018년 7월 13일
It is right. He finally display each component. first calculate coeff then component=image matrix * coeff so this will be eigenimage
참고 항목
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!