Using Principle Component Analysis (PCA) in classification

조회 수: 7 (최근 30일)
KaMu
KaMu 2014년 6월 24일
댓글: jin li 2018년 7월 13일
Hi All, I am working in a project that classify certain texture images. I will be using Gaussian Mixture model to classify all the database into textured and non-textured images.
Now, I am using PCA to reduce the dimension of my data that is 512 dimensions, so I can train the GMM model. The results from PCA are new variables and those variables will be used in the training process:
[wcoeff,score,latent,~,explained] = pca(AllData);
The question is: in the testing process how can I use the wcoeff to get the same variables? Do I just multiply the wcoeff with the new image?
  댓글 수: 2
Delsavonita Delsavonita
Delsavonita Delsavonita 2018년 5월 8일
편집: Adam 2018년 5월 8일
i have the same problem too, since you post the question on 2014, you must be done doing your project, so can you kindly send me the solution for this problem ? i really need this...
Adam
Adam 2018년 5월 8일
Don't post your e-mail address in a public forum.

댓글을 달려면 로그인하십시오.

답변 (1개)

KaMu
KaMu 2014년 6월 26일
편집: KaMu 2014년 6월 26일
I keep received emails that some one answer my question but I can't see any answers!
  댓글 수: 2
Image Analyst
Image Analyst 2018년 5월 8일
Because we don't understand your question. See my attached PCA demo. It will show you how to get the PC components.
jin li
jin li 2018년 7월 13일
It is right. He finally display each component. first calculate coeff then component=image matrix * coeff so this will be eigenimage

댓글을 달려면 로그인하십시오.

카테고리

Help CenterFile Exchange에서 Dimensionality Reduction and Feature Extraction에 대해 자세히 알아보기

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by